login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152555
Coefficients in a q-analog of the function LambertW(-2x)/(-2x), as a triangle read by rows.
6
1, 2, 7, 5, 30, 42, 42, 14, 143, 297, 462, 495, 363, 198, 42, 728, 2002, 4004, 6006, 7436, 7436, 6292, 4290, 2288, 858, 132, 3876, 13260, 31824, 58604, 91364, 122876, 145535, 153361, 143936, 120185, 87971, 56329, 29939, 12584, 3575, 429, 21318, 87210
OFFSET
0,2
LINKS
Eric Weisstein, q-Exponential Function from MathWorld.
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q)^2 ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q)^2 and A( x/e_q(x,q)^2, q) = e_q(x,q)^2.
G.f. at q=1: A(x,1) = LambertW(-2x)/(-2x).
Row sums at q=+1: Sum_{k=0..n(n-1)/2} T(n,k) = 2*(2n+2)^(n-1).
Row sums at q=-1: Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = 2*(2n+2)^[(n-1)/2].
Sum_{k=0..n(n-1)/2} T(n,k)*exp(2Pi*I*k/n)) = 2 for n>=1; i.e., the n-th row sum at q = exp(2Pi*I/n), the n-th root of unity, equals 2 for n>=1. [From Vladeta Jovovic]
Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} 2*(2*n+1)!/(2*n-k+2)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). [From Vladeta Jovovic, Dec 07 2008]
EXAMPLE
Triangle begins:
1;
2;
7,5;
30,42,42,14;
143,297,462,495,363,198,42;
728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
where row sums = 2*(2*n+2)^(n-1) (A097629).
Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
The generating function starts:
A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases.
q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
PROG
(PARI) {T(n, k)=local(e_q=1+sum(j=1, n, x^j/prod(i=1, j, (q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n), n, x)*prod(i=1, n, (q^i-1)/(q-1))+q*O(q^k), k, q)}
CROSSREFS
Cf. A097629 (row sums), A006013 (column 0), A000108 (right border), A152559.
Cf. A152556 (q=-1), A152557 (q=2), A152558 (q=3).
Cf. variants: A152290, A152550.
Sequence in context: A100759 A205448 A180510 * A343780 A094360 A335594
KEYWORD
eigen,nonn,tabf
AUTHOR
Paul D. Hanna, Dec 07 2008
STATUS
approved