Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 10 2015 19:37:00
%S 1,2,7,5,30,42,42,14,143,297,462,495,363,198,42,728,2002,4004,6006,
%T 7436,7436,6292,4290,2288,858,132,3876,13260,31824,58604,91364,122876,
%U 145535,153361,143936,120185,87971,56329,29939,12584,3575,429,21318,87210
%N Coefficients in a q-analog of the function LambertW(-2x)/(-2x), as a triangle read by rows.
%H Paul D. Hanna, <a href="/A152555/b152555.txt">Rows 0 to 30 of the triangle, flattened.</a>
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/q-ExponentialFunction.html">q-Exponential Function</a> from MathWorld.
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a> from MathWorld.
%F G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
%F G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q)^2 ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
%F G.f. satisfies: A(x,q) = e_q( x*A(x,q), q)^2 and A( x/e_q(x,q)^2, q) = e_q(x,q)^2.
%F G.f. at q=1: A(x,1) = LambertW(-2x)/(-2x).
%F Row sums at q=+1: Sum_{k=0..n(n-1)/2} T(n,k) = 2*(2n+2)^(n-1).
%F Row sums at q=-1: Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = 2*(2n+2)^[(n-1)/2].
%F Sum_{k=0..n(n-1)/2} T(n,k)*exp(2Pi*I*k/n)) = 2 for n>=1; i.e., the n-th row sum at q = exp(2Pi*I/n), the n-th root of unity, equals 2 for n>=1. [From Vladeta Jovovic]
%F Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} 2*(2*n+1)!/(2*n-k+2)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). [From _Vladeta Jovovic_, Dec 07 2008]
%e Triangle begins:
%e 1;
%e 2;
%e 7,5;
%e 30,42,42,14;
%e 143,297,462,495,363,198,42;
%e 728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
%e 3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
%e 21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
%e where row sums = 2*(2*n+2)^(n-1) (A097629).
%e Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
%e The generating function starts:
%e A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
%e The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
%e Special cases.
%e q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
%e q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
%e q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
%e q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
%o (PARI) {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
%Y Cf. A097629 (row sums), A006013 (column 0), A000108 (right border), A152559.
%Y Cf. A152556 (q=-1), A152557 (q=2), A152558 (q=3).
%Y Cf. variants: A152290, A152550.
%K eigen,nonn,tabf
%O 0,2
%A _Paul D. Hanna_, Dec 07 2008