login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152553
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=3.
4
1, 1, 9, 339, 44521, 19059921, 25799597265, 108657870607875, 1410396873934264497, 56078100848527445045121, 6801233273726638573734096441, 2508450630100541880792088526933139
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = e_q( x*A(x)^2, 3) and A( x/e_q(x,3)^2 ) = e_q(x,3) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,3) where faq(n,3) = q-factorial of n at q=3.
G.f.: A(x) = [(1/x)*Series_Reversion( x/e_q(x,3)^2 )]^(1/2)
a(n) = Sum_{k=0..n(n-1)/2} A152550(n,k)*3^k.
EXAMPLE
G.f.: A(x) = 1 + x + 9/4*x^2 + 339/52*x^3 + 44521/2080*x^4 + 19059921/251680*x^5 +...
e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 + x^6/91611520 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
PROG
(PARI) {a(n, q=3)=local(e_q=1+sum(j=1, n, x^j/prod(i=1, j, (q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n), n, x)*prod(i=1, n, (q^i-1)/(q-1))}
CROSSREFS
Cf. A152550, A152551 (q=-1), A152552 (q=2); A015001.
Sequence in context: A012105 A100569 A244503 * A090087 A090085 A098650
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2008
STATUS
approved