|
|
A098650
|
|
Smallest odd pseudoprime k > b to bases p_i, i.e., the smallest composite number k > b such that p_i^(k-1)-1 is divisible by k, p_i are the prime factors of b and b is squarefree.
|
|
7
|
|
|
9, 341, 91, 217, 1105, 25, 561, 15, 21, 561, 1541, 45, 45, 703, 645, 33, 561, 35, 1729, 49, 703, 1729, 561, 45, 561, 1891, 105, 1105, 77, 341, 65, 91, 65, 1729, 1105, 341, 87, 91, 561, 561, 1105, 85, 91, 561, 105, 111, 561, 703, 2465, 91, 561, 105, 781, 561, 91
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Paulo Ribenboim, The New Book of Prime Number Records, New York: Springer-Verlag, p. 100, 1996.
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
Index entries for sequences related to pseudoprimes
|
|
EXAMPLE
|
a(n) is the A005117(n). A005117(5) = 6 = 2*3. a(5) = 1105 because 1105 is the smallest psp to both bases 2 and 3.
|
|
MATHEMATICA
|
PrimeFactors[ n_ ] := Flatten[ Table[ # [[ 1 ]], {1} ] & /@ FactorInteger[ n ]]; f[n_] := Block[{k = n + 1}, If[ EvenQ[k], k++ ]; While[ PrimeQ[k] || Union[ PowerMod[ PrimeFactors[n], k - 1, k]] != {1}, k += 2]; k]; f /@ Select[ Range[90], SquareFreeQ[ # ] &]
|
|
CROSSREFS
|
Cf. A007535, A005117, records in A098651 & A098652.
Sequence in context: A152553 A090087 A090085 * A098652 A110695 A157589
Adjacent sequences: A098647 A098648 A098649 * A098651 A098652 A098653
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Robert G. Wilson v, Sep 18 2004
|
|
STATUS
|
approved
|
|
|
|