login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152552 Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=2. 4
1, 1, 7, 148, 7611, 872341, 213651052, 109327540680, 115381584785027, 249159124679346991, 1095244903267253760231, 9765839519517673327876328, 176188639876138769279299798900, 6419535615261099235478072782943388 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..13.

FORMULA

G.f. satisfies: A(x) = e_q( x*A(x)^2, 2) and A( x/e_q(x,2)^2 ) = e_q(x,2) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.

G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,2) where faq(n,2) = q-factorial of n at q=2.

G.f.: A(x) = [(1/x)*Series_Reversion( x/e_q(x,2)^2 )]^(1/2)

a(n) = Sum_{k=0..n(n-1)/2} A152550(n,k)*2^k.

EXAMPLE

G.f.: A(x) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...

e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...

The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).

PROG

(PARI) {a(n, q=2)=local(e_q=1+sum(j=1, n, x^j/prod(i=1, j, (q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n), n, x)*prod(i=1, n, (q^i-1)/(q-1))}

CROSSREFS

Cf. A152550, A152551 (q=-1), A152553 (q=3); A005329.

Sequence in context: A251668 A048935 A291677 * A308581 A305467 A229806

Adjacent sequences:  A152549 A152550 A152551 * A152553 A152554 A152555

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 02:41 EDT 2021. Contains 347609 sequences. (Running on oeis4.)