login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152552
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=2.
4
1, 1, 7, 148, 7611, 872341, 213651052, 109327540680, 115381584785027, 249159124679346991, 1095244903267253760231, 9765839519517673327876328, 176188639876138769279299798900, 6419535615261099235478072782943388
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = e_q( x*A(x)^2, 2) and A( x/e_q(x,2)^2 ) = e_q(x,2) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,2) where faq(n,2) = q-factorial of n at q=2.
G.f.: A(x) = [(1/x)*Series_Reversion( x/e_q(x,2)^2 )]^(1/2)
a(n) = Sum_{k=0..n(n-1)/2} A152550(n,k)*2^k.
EXAMPLE
G.f.: A(x) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
PROG
(PARI) {a(n, q=2)=local(e_q=1+sum(j=1, n, x^j/prod(i=1, j, (q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n), n, x)*prod(i=1, n, (q^i-1)/(q-1))}
CROSSREFS
Cf. A152550, A152551 (q=-1), A152553 (q=3); A005329.
Sequence in context: A376227 A048935 A291677 * A349286 A308581 A305467
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2008
STATUS
approved