OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} 3^(i+j) * a(i) * a(j) * a(n-i-j-1).
a(n) ~ c * 3^(n*(n-1)/2) * 2^n, where c = 0.7827821536020754599551185976017878354967268590673601224489106938395... - Vaclav Kotesovec, Nov 13 2021
MATHEMATICA
nmax = 13; A[_] = 0; Do[A[x_] = 1/(1 - x A[3 x]^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[3^(i + j) a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 13}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 13 2021
STATUS
approved