OFFSET
2,1
COMMENTS
Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function
(1)... t*exp(t*x)/(exp(m*t)-1) * sum {r = 0..m-1} X(r)*exp(r*t)
= sum {n = 0..inf} B_n(X,x)*t^n/n!.
For the theory and properties of these polynomials see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by
(2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = -1; X(2*n) = 0.
Cf. A153641.
REFERENCES
H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.
FORMULA
TABLE ENTRIES
(1)... T(2*n,2*k+1) = 0, T(2*n+1,2*k) = 0;
(2)... T(2*n,2*k) = (-1)^(n-k-1)*C(2*n,2*k)*2*(n-k)*A000464(n-k-1);
(3)... T(2*n+1,2*k+1) = (-1)^(n-k-1)*C(2*n+1,2*k+1)*2*(n-k)*A000464(n-k-1);
where C(n,k) = binomial(n,k).
GENERATING FUNCTION
The e.g.f. for these generalized Bernoulli polynomials is
(4)... t*exp(x*t)*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1)
= sum {n = 2..inf} B_n(X,x)*t^n/n! = 2*t^2/2! + 6*x*t^3/3! + (12*x^2 - 44)*t^4/4! + ....
In terms of the ordinary Bernoulli polynomials B_n(x)
(5)... B_n(X,x) = 8^(n-1)*{B_n((x+1)/8) - B_n((x+3)/8) - B_n((x+5)/8) + B_n((x+7)/8)}.
The B_n(X,x) are Appell polynomials of the form
(6)... B_n(X,x) = sum {j = 0..n} binomial(n,j)*B_j(X,0)*x*(n-j).
The sequence of generalized Bernoulli numbers
(7)... [B_n(X,0)]n>=2 = [2,0,-44,0,2166,0,...]
has the e.g.f.
(8)... t*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1),
which simplifies to
(9)... t*sinh(t)/cosh(2*t).
Hence
(10)... B_(2*n)(X,0) = (-1)^(n+1)*2*n*A000464(n-1); B_(2*n+1)(X,0) = 0.
The sequence {B_(2*n)(X,0)}n>=2 is A161722.
RELATION WITH TWISTED SUMS OF POWERS
The generalized Bernoulli polynomials may be used to evaluate sums of k-th powers twisted by the function X(n). For the present case the result is
(11)... sum{n = 0..8*N-1} X(n)*n^k = 1^k-3^k-5^k+7^k- ... +(8*N-1)^k
= [B_(k+1)(X,8*N) - B_(k+1)(X,0)]/(k+1)
For the proof, apply [Cohen, Corollary 9.4.17 with m = 8 and x = 0].
MISCELLANEOUS
(12)... Row sums [2, 6, -32, ...] = (-1)^(1+binomial(n,2))*A109572(n)
EXAMPLE
The triangle begins
n\k|........0.......1........2.......3......4.......5.......6
=============================================================
.2.|........2
.3.|........0.......6
.4.|......-44.......0.......12
.5.|........0....-220........0......20
.6.|.....2166.......0.....-660.......0......30
.7.|........0...15162........0...-1540.......0.....42
.8.|..-196888.......0....60648.......0...-3080......0......56
...
MAPLE
with(gfun):
for n from 2 to 10 do
Genbernoulli(n, x) := 8^(n-1)*(bernoulli(n, (x+1)/8)-bernoulli(n, (x+3)/8)-bernoulli(n, (x+5)/8)+bernoulli(n, (x+7)/8));
seriestolist(series(Genbernoulli(n, x), x, 10))
end do;
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jun 17 2009
STATUS
approved