This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151749 a(0) = 1, a(1) = 3; a(n+2) = (a(n+1) + a(n))/2 if 2 divides (a(n+1) + a(n)), a(n+2) = a(n+1) + a(n) otherwise. 2
 1, 3, 2, 5, 7, 6, 13, 19, 16, 35, 51, 43, 47, 45, 46, 91, 137, 114, 251, 365, 308, 673, 981, 827, 904, 1731, 2635, 2183, 2409, 2296, 4705, 7001, 5853, 6427, 6140, 12567, 18707, 15637, 17172, 32809, 49981, 41395, 45688, 87083, 132771, 109927, 121349, 115638 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Greene discusses the whole family of sequences defined by a rule of the form a(n) = (Sum_{i=1..k} c_i a(i))/ (Sum_{i=1..k} c_i) if (Sum_{i=1..k} c_i) divides (Sum_{i=1..k} c_i a(i)), a(n) = (Sum_{i=1..k} c_i a(i)) if not, where k and the c_i are nonnegative integers and a(0), ..., a(k-1) are specified initial terms. Many further examples of such sequences could be added to the OEIS! LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 A. M. Amleh et al., On Some Difference Equations with Eventually Periodic Solutions, J. Math. Anal. Appl., 223 (1998), 196-215. J. Greene, The Unboundedness of a Family of Difference Equations Over the Integers, Fib. Q., 46/47 (2008/2009), 146-152. MAPLE A151749 := proc(n) option remember; if n <= 1 then 1+2*n; else prev := procname(n-1)+procname(n-2) ; if prev mod 2 = 0 then prev/2 ; else prev; fi; fi; end: seq(A151749(n), n=0..80) ; # R. J. Mathar, Jun 18 2009 MATHEMATICA f[{a_, b_}]:=Module[{c=a+b}, If[EvenQ[c], c/2, c]]; Transpose[NestList[ {Last[#], f[#]}&, {1, 3}, 50]][] (* Harvey P. Dale, Oct 12 2011 *) CROSSREFS Cf. A069202. Sequence in context: A082334 A294371 A325985 * A175911 A304881 A266635 Adjacent sequences:  A151746 A151747 A151748 * A151750 A151751 A151752 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jun 17 2009 EXTENSIONS More terms from R. J. Mathar, Jun 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 08:13 EDT 2019. Contains 327214 sequences. (Running on oeis4.)