login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147573
Numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13}.
6
30030, 60060, 90090, 120120, 150150, 180180, 210210, 240240, 270270, 300300, 330330, 360360, 390390, 420420, 450450, 480480, 540540, 600600, 630630, 660660, 720720, 750750, 780780, 810810, 840840, 900900, 960960, 990990, 1051050, 1081080, 1171170, 1201200, 1261260
OFFSET
1,1
COMMENTS
Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575
Although 39270 has exactly 6 distinct prime divisors (39270=2*3*5*7*11*17), it is not in this sequence because the 6 distinct prime divisors may only comprise 2, 3, 5, 7, 11, and 13. - Harvey P. Dale, Oct 11 2014
LINKS
FORMULA
a(n) = 30030 * A080197(n). - Charles R Greathouse IV, Sep 14 2015
Sum_{n>=1} 1/a(n) = 1/5760. - Amiram Eldar, Nov 12 2020
MATHEMATICA
a = {}; Do[If[EulerPhi[x]/x == 192/1001, AppendTo[a, x]], {x, 1, 100000}]; a
PROG
(PARI) is(n)=if(n%30030, return(0)); my(g=30030); while(g>1, n/=g; g=gcd(n, 30030)); n==1 \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
Subsequence of A067885 and of A080197.
Sequence in context: A336671 A258361 A072940 * A046324 A138206 A031853
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 07 2008
EXTENSIONS
More terms from Amiram Eldar, Mar 10 2020
STATUS
approved