The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144836 a(n) = Lucas(4^n). 4
 2, 7, 2207, 23725150497407, 316837008400094222150776738483768236006420971486980607 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Previous name: a(n) = round(phi^(4^n)) where phi is the golden ratio (A001622). LINKS Table of n, a(n) for n=0..4. FORMULA a(n) = phi^(4^n) + (1 - phi)^(4^n) = phi^(4^n) + (-phi)^(-4^n), where phi is golden ratio = (1 + sqrt(5))/2 = 1.6180339887... . - Artur Jasinski, Oct 05 2008 a(n) = 2*cosh(4^n*arccosh(sqrt(5)/2)). - Artur Jasinski, Oct 09 2008 a(n+1) = a(n)^4 - 4*a(n-1)^2 + 2 with a(1) = 7. - Peter Bala, Nov 28 2022 MAPLE a := proc(n) option remember; if n = 1 then 7 else a(n-1)^4 - 4*a(n-1)^2 + 2 end if; end proc: seq(a(n), n = 1..4); # Peter Bala, Nov 28 2022 MATHEMATICA c = N[GoldenRatio, 1000]; Table[Round[c^(4^n)], {n, 0, 5}] c = (1 + Sqrt[5])/2; Table[Expand[c^(4^n) + (1 - c)^(4^n)], {n, 0, 5}] (* Artur Jasinski, Oct 05 2008 *) Table[Round[N[2*Cosh[4^n*ArcCosh[Sqrt[5]/2]], 100], {n, 1, 7}] (* Artur Jasinski, Oct 09 2008 *) PROG (PARI) a(n)=round(((1+sqrt(5))/2)^4^n) \\ Charles R Greathouse IV, Jul 29 2011 CROSSREFS Cf. A000032, A001566, A001622, A006267, A144836, A144837, A144838, A144839. Sequence in context: A138198 A358482 A320505 * A174308 A088549 A226704 Adjacent sequences: A144833 A144834 A144835 * A144837 A144838 A144839 KEYWORD nonn,easy AUTHOR Artur Jasinski, Sep 22 2008 EXTENSIONS Offset corrected by Charles R Greathouse IV, May 15 2013 Offset changed to 0 by Georg Fischer, Sep 02 2022 New name from Peter Bala, Nov 18 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)