login
A144837
a(n) = Lucas(5^n).
6
11, 167761, 132878596168524201724674011
OFFSET
1,1
COMMENTS
Previous name was: a(n) = round(phi^(5^n)) where phi = 1.6180339887... = (sqrt(5) + 1)/2 = A001622.
a(4), a 131-digit number, is too large to show here.
FORMULA
a(n) = phi^(5^n) + (1-phi)^(5^n) = phi^(5^n) + (-phi)^(-5^n). - Artur Jasinski, Oct 05 2008
From Peter Bala, Nov 14 2022: (Start)
a(n) = A000032(5^n).
a(n) = a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1) with a(1) = 11.
a(n) == 1 (mod 5).
a(n+1) == a(n) (mod 5^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
Conjecture: a(n+1) == a(n) (mod 5^(n+r+1)) for n >= r.
The smallest positive residue of a(n) mod(5^n) = A268922(n).
In the ring of 5-adic integers the limit_{n -> oo} a(n) exists and is equal to A269591. An example is given below. (End)
EXAMPLE
The base 5 representation of a(3) = 132878596168524201724674011 begins 1 + 2*5 + 0*(5^2) + 2*(5^3) + 3*(5^4) + 0*(5^5) + 4*(5^6) + O(5^7) so A269591 begins [1, 2, 0, 2, 3, 0, 4, ...]. - Peter Bala, Nov 14 2022
MAPLE
a := proc(n) option remember; if n = 1 then 11 else a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1) end if; end;
seq(a(n), n = 1..5); # Peter Bala, Nov 14 2022
MATHEMATICA
c = N[GoldenRatio, 1000]; Table[Round[c^(5^n)], {n, 1, 5}]
c = (1 + Sqrt[5])/2; Table[Expand[c^(5^n) + (1 - c)^(5^n)], {n, 0, 5}] (* Artur Jasinski, Oct 05 2008 *)
LucasL[5^Range[5]] (* Harvey P. Dale, Apr 01 2023 *)
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Sep 22 2008
EXTENSIONS
New name from Peter Bala, Nov 10 2022
STATUS
approved