login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144497
Row 4 of array in A144502.
5
37, 266, 2165, 19714, 198773, 2199722, 26516581, 345921410, 4856217989, 73003575178, 1170146049557, 19921780455746, 359032158501205, 6828661185433514, 136693194501702533, 2872718327660671042, 63240895146440396261, 1455362908778264247050, 34945987212582211588789
OFFSET
0,1
LINKS
FORMULA
E.g.f.: exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7.
a(n) = (n*(n^6 + 21*n^5 + 172*n^4 + 705*n^3 + 1522*n^2 + 1623*n + 653)*a(n-1) - (n^3 + 12*n^2 + 41*n + 37))/(n^6 + 15*n^5 + 82*n^4 + 207*n^3 + 244*n^2 + 105*n - 1), with a(0) = 37. - G. C. Greubel, Oct 08 2023
MATHEMATICA
a[n_]:= If[n<1, 37, (n*(n^6+21*n^5+172*n^4+705*n^3+1522*n^2+1623*n +653)*a[n-1] -(n^3+12*n^2+41*n+37))/(n^6+15*n^5+82*n^4+207*n^3 +244*n^2+105*n-1)];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Oct 08 2023 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7)) \\ Michel Marcus, Apr 06 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (37-30*x+9*x^2-x^3)*Exp(x)/(1-x)^7 ))); // G. C. Greubel, Oct 08 2023
(SageMath)
def A144497_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( (37-30*x+9*x^2-x^3)*exp(x)/(1-x)^7 ).egf_to_ogf().list()
A144497_list(40) # G. C. Greubel, Oct 08 2023
KEYWORD
nonn
AUTHOR
STATUS
approved