login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row 4 of array in A144502.
5

%I #14 Oct 08 2023 04:43:03

%S 37,266,2165,19714,198773,2199722,26516581,345921410,4856217989,

%T 73003575178,1170146049557,19921780455746,359032158501205,

%U 6828661185433514,136693194501702533,2872718327660671042,63240895146440396261,1455362908778264247050,34945987212582211588789

%N Row 4 of array in A144502.

%H Seiichi Manyama, <a href="/A144497/b144497.txt">Table of n, a(n) for n = 0..444</a>

%F E.g.f.: exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7.

%F a(n) = (n*(n^6 + 21*n^5 + 172*n^4 + 705*n^3 + 1522*n^2 + 1623*n + 653)*a(n-1) - (n^3 + 12*n^2 + 41*n + 37))/(n^6 + 15*n^5 + 82*n^4 + 207*n^3 + 244*n^2 + 105*n - 1), with a(0) = 37. - _G. C. Greubel_, Oct 08 2023

%t a[n_]:= If[n<1, 37, (n*(n^6+21*n^5+172*n^4+705*n^3+1522*n^2+1623*n +653)*a[n-1] -(n^3+12*n^2+41*n+37))/(n^6+15*n^5+82*n^4+207*n^3 +244*n^2+105*n-1)];

%t Table[a[n], {n,0,40}] (* _G. C. Greubel_, Oct 08 2023 *)

%o (PARI) my(x='x+O('x^25)); Vec(serlaplace(exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7)) \\ _Michel Marcus_, Apr 06 2019

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (37-30*x+9*x^2-x^3)*Exp(x)/(1-x)^7 ))); // _G. C. Greubel_, Oct 08 2023

%o (SageMath)

%o def A144497_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( (37-30*x+9*x^2-x^3)*exp(x)/(1-x)^7 ).egf_to_ogf().list()

%o A144497_list(40) # _G. C. Greubel_, Oct 08 2023

%Y Cf. A144495, A144496, A144498, A144499, A144500, A144501, A144502, A144503.

%K nonn

%O 0,1

%A _David Applegate_ and _N. J. A. Sloane_, Dec 13 2008