login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144496
Row 3 of array in A144502.
5
7, 37, 229, 1633, 13219, 119917, 1205857, 13318249, 160305343, 2088846709, 29297613277, 440110297777, 7050173910619, 119970793032253, 2161243124917849, 41091937905633337, 822320410135133047, 17277401903869659589, 380267691288777510613, 8749454854573455141889
OFFSET
0,1
LINKS
FORMULA
E.g.f.: (7-5*x+x^2)*exp(x)/(1-x)^5.
a(n) ~ n! * n^4 * exp(1)/8. - Vaclav Kotesovec, Oct 08 2013
a(n) = (n*(n^4 + 10*n^3 + 33*n^2 + 44*n + 21)*a(n-1) + n^2 + 6*n +
7)/(n^4 + 6*n^3 + 9*n^2 + 4*n + 1), with a(0) = 7. - G. C. Greubel, Oct 07 2023
MATHEMATICA
CoefficientList[Series[E^x*(7-5*x+x^2)/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (7-5*x+x^2)*Exp(x)/(1-x)^5 ))); // G. C. Greubel, Oct 07 2023
(SageMath)
def a(n): # a = A144496
if (n==0): return 7
else: return (n*(n^4+10*n^3+33*n^2+44*n+21)*a(n-1) + n^2+6*n+7)/(n^4+6*n^3+9*n^2+4*n+1)
[a(n) for n in range(41)] # G. C. Greubel, Oct 07 2023
KEYWORD
nonn
AUTHOR
STATUS
approved