login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144501
Main diagonal of array in A144502.
6
1, 2, 30, 1633, 198773, 42965211, 14505751627, 7051160946740, 4664901181968498, 4030793305701978223, 4407914679125170417031, 5950921219972964057360847, 9721118017169914469460646225, 18898282608956442548700379478918, 43117198379072165094561711078882078, 114089724623922992953782697056886301761
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 3^(3*n - 3/2) * n^(2*n - 1) / (2^(n-1) * exp(2*n - 1)). - Vaclav Kotesovec, Apr 06 2019
a(n) = ( 3*(3*n-4)*(3*n-8)*(9*n^2 - 21*n + 11)*a(n-1) + 3*(3*n-2)*a(n-2) - (3*n-5)*(3*n-2)*a(n-3) )/(2*(3*n-5)*(3*n-8)), with a(0) = 1, a(1) = 2, a(3) = 30. - G. C. Greubel, Oct 09 2023
MATHEMATICA
a[n_]:= a[n]= If[n==0, 1, If[n<3, 2*(15)^(n-1), (3*(3*n-4)*(3*n-8)*(9*n^2- 21*n+11)*a[n-1] +3*(3*n-2)*a[n-2] -(3*n-5)*(3*n-2)*a[n-3])/(2*(3*n-5)*(3*n-8))]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 09 2023 *)
PROG
(Magma) I:=[1, 2, 30]; [n le 3 select I[n] else ( 3*(3*n-7)*(3*n-11)*(9*n^2 - 39*n + 41)*Self(n-1) + 3*(3*n-5)*Self(n-2) - (3*n-8)*(3*n-5)*Self(n-3) )/(2*(3*n-8)*(3*n-11)): n in [1..30]]; // G. C. Greubel, Oct 09 2023
(SageMath)
@CachedFunction
def a(n): # A144503
if (n<3): return (1, 2, 30)[n]
else: return ( 3*(3*n-4)*(3*n-8)*(9*n^2 - 21*n + 11)*a(n-1) + 3*(3*n-2)*a(n-2) - (3*n-5)*(3*n-2)*a(n-3) )/(2*(3*n-5)*(3*n-8))
[a(n) for n in range(31)] # G. C. Greubel, Oct 09 2023
CROSSREFS
Cf. A144502.
Sequence in context: A262004 A132104 A208093 * A198861 A162841 A158260
KEYWORD
nonn
AUTHOR
STATUS
approved