login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198861 The number of ways to paint the faces of the five Platonic solids using exactly n colors where n is the number of faces of each solid. 3
2, 30, 1680, 7983360, 40548366802944000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Let G, the group of rotations in 3 dimensional space act on the set of n! paintings of each Platonic solid having n faces. There are n! fixed points in the action table since the only element in G that leaves a painting fixed is the identity element. The order of G is A098427/2. So by Burnside's Lemma a(n)=n!/|G|.

LINKS

Table of n, a(n) for n=1..5.

David Broughton's Puzzles & Programs, Colouring The Platonic Solids

FORMULA

a(n) = A053016(n)!/(2*A063722(n)) (see link). - Michel Marcus, Aug 24 2014

PROG

(PARI) lista() = {ve = [6, 12, 12, 30, 30 ]; vf = [4, 6, 8, 12, 20 ]; for (i=1, 5, nb = vf[i]!/(2*ve[i]); print1(nb, ", "); ); } \\ Michel Marcus, Aug 25 2014

CROSSREFS

Cf. A053016 (number of faces), A063722 (number of edges).

Sequence in context: A132104 A208093 A144501 * A162841 A158260 A099800

Adjacent sequences:  A198858 A198859 A198860 * A198862 A198863 A198864

KEYWORD

nonn,fini,full

AUTHOR

Geoffrey Critzer, Oct 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 4 09:28 EDT 2022. Contains 357239 sequences. (Running on oeis4.)