login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198862
Sum of the n-th antidiagonal in the triangle A192011.
1
-1, 2, 2, 2, 3, 1, -1, -3, -6, -7, -6, -3, 3, 10, 16, 19, 16, 6, -10, -29, -45, -51, -41, -12, 33, 84, 125, 137, 104, 20, -105, -242, -346, -366, -261, -19, 327, 693, 954, 973, 646, -47, -1001, -1974, -2620, -2573, -1572, 402, 3022
OFFSET
0,2
COMMENTS
The current sequence and its successive differences are:
-1, 2, 2, 2, 3, 1, -1 ,-3, -6, -7, ...
3, 0, 0, 1, -2, -2, -2, -3, -1, 1, 3, 6, 7, 6, 3, -3, -10, -16, ...
-3, 0, 1, -3, 0, 0, -1, 2, 2, 2, 3, 1, -1, -3, -6, -7, -6, ...
3, 1, -4, 3, 0, -1, 3, 0, 0, 1, -2, -2, -2, -3, -1, 1, 3, 6, 7, ...
-2, -5, 7, -3, -1, 4, -3, 0, 1, -3, 0, 0, -1, 2, 2, 2, 3, 1, ...
-3, 12, -10, 2, 5, -7, 3, 1, -4, 3, 0, -1, 3, 0, 0, 1, -2, ...
15, -22, 12, 3, -12, 10, -2, -5, 7, -3, -1, 4, -3, 0, ...
-37, 34, -9, -15, 22, -12, -3, 12, -10, 2, 5, -7, 3, 1, -4, ...
Each row obeys the same linear recurrence and is a version of the row 4 lines farther up in the same array shifted right by 12 places.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} A192011(n-k,k).
a(n) = a(n-1) - a(n-4), n > 3.
From R. J. Mathar, Nov 02 2011: (Start)
G.f.: (-1 + 3*x) / (1 - x + x^4).
a(n) = 3*A099530(n-1) - A099530(n). (End)
MAPLE
A198862 := proc(n)
add( A192011(n-k, k), k=0..floor(n/2)) ;
end proc:
seq(A198862(n), n=0..80) ; # R. J. Mathar, Nov 03 2011
CROSSREFS
Sequence in context: A162203 A071455 A288724 * A349227 A264025 A139465
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Oct 30 2011
STATUS
approved