OFFSET
0,2
COMMENTS
The current sequence and its successive differences are:
-1, 2, 2, 2, 3, 1, -1 ,-3, -6, -7, ...
3, 0, 0, 1, -2, -2, -2, -3, -1, 1, 3, 6, 7, 6, 3, -3, -10, -16, ...
-3, 0, 1, -3, 0, 0, -1, 2, 2, 2, 3, 1, -1, -3, -6, -7, -6, ...
3, 1, -4, 3, 0, -1, 3, 0, 0, 1, -2, -2, -2, -3, -1, 1, 3, 6, 7, ...
-2, -5, 7, -3, -1, 4, -3, 0, 1, -3, 0, 0, -1, 2, 2, 2, 3, 1, ...
-3, 12, -10, 2, 5, -7, 3, 1, -4, 3, 0, -1, 3, 0, 0, 1, -2, ...
15, -22, 12, 3, -12, 10, -2, -5, 7, -3, -1, 4, -3, 0, ...
-37, 34, -9, -15, 22, -12, -3, 12, -10, 2, 5, -7, 3, 1, -4, ...
Each row obeys the same linear recurrence and is a version of the row 4 lines farther up in the same array shifted right by 12 places.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1).
FORMULA
a(n) = Sum_{k=0..floor(n/2)} A192011(n-k,k).
a(n) = a(n-1) - a(n-4), n > 3.
From R. J. Mathar, Nov 02 2011: (Start)
G.f.: (-1 + 3*x) / (1 - x + x^4).
MAPLE
A198862 := proc(n)
add( A192011(n-k, k), k=0..floor(n/2)) ;
end proc:
seq(A198862(n), n=0..80) ; # R. J. Mathar, Nov 03 2011
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Oct 30 2011
STATUS
approved