login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144400
Triangle read by rows: row n (n > 0) gives the coefficients of x^k (0 <= k <= n - 1) in the expansion of Sum_{j=0..n} A000931(j+4)*binomial(n, j)*x^(j - 1)*(1 - x)^(n - j).
4
1, 2, -1, 3, -3, 1, 4, -6, 4, 0, 5, -10, 10, 0, -3, 6, -15, 20, 0, -18, 10, 7, -21, 35, 0, -63, 70, -24, 8, -28, 56, 0, -168, 280, -192, 49, 9, -36, 84, 0, -378, 840, -864, 441, -89, 10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145, 11, -55, 165, 0
OFFSET
1,2
FORMULA
G.f.: (y - (1 - 2*x)*y^2)/(1 - 3*(1 - x)*y + (3 - 6*x + 2*x^2)*y^2 - (1 - 3*x + 2*x^2 + x^3)*y^3). - Franck Maminirina Ramaharo, Oct 22 2018
EXAMPLE
Triangle begins:
1;
2, -1;
3, -3, 1;
4, -6, 4, 0;
5, -10, 10, 0, -3;
6, -15, 20, 0, -18, 10;
7, -21, 35, 0, -63, 70, -24;
8, -28, 56, 0, -168, 280, -192, 49;
9, -36, 84, 0, -378, 840, -864, 441, -89;
10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145;
... reformatted. - Franck Maminirina Ramaharo, Oct 22 2018
MATHEMATICA
a[n_]:= a[n]= If[n<3, Fibonacci[n], a[n-2] + a[n-3]];
p[x_, n_]:= Sum[a[k]*Binomial[n, k]*x^(k-1)*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[p[x, n], x, k], {n, 12}, {k, 0, n-1}]//Flatten
PROG
(Sage)
@CachedFunction
def f(n): return fibonacci(n) if (n<3) else f(n-2) + f(n-3)
def p(n, x): return sum( binomial(n, j)*f(j)*x^(j-1)*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
EXTENSIONS
Edited, and new name by Franck Maminirina Ramaharo, Oct 22 2018
STATUS
approved