OFFSET
1,2
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
G.f.: (y - (1 - 2*x)*y^2)/(1 - 3*(1 - x)*y + (3 - 6*x + 2*x^2)*y^2 - (1 - 3*x + 2*x^2 + x^3)*y^3). - Franck Maminirina Ramaharo, Oct 22 2018
EXAMPLE
Triangle begins:
1;
2, -1;
3, -3, 1;
4, -6, 4, 0;
5, -10, 10, 0, -3;
6, -15, 20, 0, -18, 10;
7, -21, 35, 0, -63, 70, -24;
8, -28, 56, 0, -168, 280, -192, 49;
9, -36, 84, 0, -378, 840, -864, 441, -89;
10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145;
... reformatted. - Franck Maminirina Ramaharo, Oct 22 2018
MATHEMATICA
a[n_]:= a[n]= If[n<3, Fibonacci[n], a[n-2] + a[n-3]];
p[x_, n_]:= Sum[a[k]*Binomial[n, k]*x^(k-1)*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[p[x, n], x, k], {n, 12}, {k, 0, n-1}]//Flatten
PROG
(Sage)
@CachedFunction
def f(n): return fibonacci(n) if (n<3) else f(n-2) + f(n-3)
def p(n, x): return sum( binomial(n, j)*f(j)*x^(j-1)*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 03 2008
EXTENSIONS
Edited, and new name by Franck Maminirina Ramaharo, Oct 22 2018
STATUS
approved