login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123021
Triangle of coefficients of (1 - x)^n*B(x/(1 - x),n), where B(x,n) is the Morgan-Voyce polynomial related to A078812.
13
1, 2, -1, 3, -2, 4, -2, -2, 1, 5, 0, -9, 6, -1, 6, 5, -24, 18, -4, 7, 14, -49, 36, -4, -4, 1, 8, 28, -84, 50, 20, -30, 10, -1, 9, 48, -126, 36, 115, -120, 45, -6, 10, 75, -168, -48, 358, -335, 120, -6, -6, 1, 11, 110, -198, -264, 847, -714, 175, 84, -63, 14
OFFSET
0,2
COMMENTS
The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A078812(n,j)*x^j*(1 - x)^(n - j).
LINKS
Thomas Koshy, Morgan-Voyce Polynomials, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495.
M. N. S. Swamy, Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials, The Fibonacci Quarterly Vol. 38 (2000), 61-70.
Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
FORMULA
From Franck Maminirina Ramaharo, Oct 09 2018: (Start)
Row n = coefficients in the expansion of (1/sqrt((4 - 3*x)*x))*(((2 - x + sqrt((4 - 3*x)*x))/2)^(n + 1) - ((2 - x - sqrt((4 - 3*x)*x))/2)^(n + 1)).
G.f.: 1/(1 - (2 - x)*y + (1 - x)^2*y^2).
E.g.f.: (1/sqrt((4 - 3*x)*x))*((2 - x + sqrt((4 - 3*x)*x))*exp(y*(2 - x + sqrt((4 - 3*x)*x))/2)/2 - (2 - x - sqrt((4 - 3*x)*x))*exp(y*(2 - x - sqrt((4 - 3*x)*x))/2)/2).
T(n,1) = -A254749(n+1). (End)
EXAMPLE
Triangle begins:
1;
2, -1;
3, -2;
4, -2, -2, 1;
5, 0, -9, 6, -1;
6, 5, -24, 18, -4;
7, 14, -49, 36, -4, -4, 1;
8, 28, -84, 50, 20, -30, 10, -1;
9, 48, -126, 36, 115, -120, 45, -6;
10, 75, -168, -48, 358, -335, 120, -6, -6, 1;
11, 110, -198, -264, 847, -714, 175, 84, -63, 14, -1;
... - Franck Maminirina Ramaharo, Oct 09 2018
MATHEMATICA
Table[CoefficientList[Sum[Binomial[n+k+1, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
PROG
(Maxima) t(n, k) := binomial(n + k + 1, n - k)$
P(x, n) := expand(sum(t(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 09 2018 */
(Sage)
def p(n, x): return sum( binomial(n+j+1, n-j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
KEYWORD
sign,tabf
AUTHOR
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 09 2018
STATUS
approved