login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144399
Triangle in A144385 with rows left-adjusted.
4
1, 1, 1, 1, 1, 3, 7, 10, 10, 1, 6, 25, 75, 175, 280, 280, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950
OFFSET
0,6
COMMENTS
Row n has 2n+1 terms.
LINKS
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
EXAMPLE
Triangle begins:
1
1, 1, 1
1, 3, 7, 10, 10
1, 6, 25, 75, 175, 280, 280
1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400
MAPLE
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..min(3, n))*x))
end:
T:= (n, k)-> coeff(b(k), x, n):
seq(seq(T(n, k), k=n..3*n), n=0..6); # Alois P. Heinz, May 31 2018
MATHEMATICA
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, Min[3, n]}]*x]];
T[n_, k_] := Coefficient[b[k], x, n];
Table[T[n, k], {n, 0, 6}, { k, n, 3n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A144385. Row sums give A144416.
Sequence in context: A112105 A065501 A144385 * A310176 A138935 A375474
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved