login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144399 Triangle in A144385 with rows left-adjusted. 4
1, 1, 1, 1, 1, 3, 7, 10, 10, 1, 6, 25, 75, 175, 280, 280, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Row n has 2n+1 terms.

LINKS

Alois P. Heinz, Rows n = 0..100, flattened

Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.

David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)

EXAMPLE

Triangle begins:

1

1, 1, 1

1, 3, 7, 10, 10

1, 6, 25, 75, 175, 280, 280

1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400

MAPLE

b:= proc(n) option remember; expand(`if`(n=0, 1, add(

       b(n-j)*binomial(n-1, j-1), j=1..min(3, n))*x))

    end:

T:= (n, k)-> coeff(b(k), x, n):

seq(seq(T(n, k), k=n..3*n), n=0..6);  # Alois P. Heinz, May 31 2018

MATHEMATICA

b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, Min[3, n]}]*x]];

T[n_, k_] := Coefficient[b[k], x, n];

Table[T[n, k], {n, 0, 6}, { k, n, 3n}] // Flatten (* Jean-Fran├žois Alcover, Jul 10 2018, after Alois P. Heinz *)

CROSSREFS

Cf. A144385. Row sums give A144416.

Sequence in context: A112105 A065501 A144385 * A310176 A138935 A030325

Adjacent sequences:  A144396 A144397 A144398 * A144400 A144401 A144402

KEYWORD

nonn,tabf

AUTHOR

David Applegate and N. J. A. Sloane, Dec 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 17:05 EDT 2021. Contains 347693 sequences. (Running on oeis4.)