login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143256
Triangle read by rows, matrix multiplication A051731 * A128407 * A127648, 1<=k<=n.
2
1, 1, -2, 1, 0, -3, 1, -2, 0, 0, 1, 0, 0, 0, -5, 1, -2, -3, 0, 0, 6, 1, 0, 0, 0, 0, 0, -7, 1, -2, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, 0, 1, -2, 0, 0, -5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1, -2, -3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 14
OFFSET
1,3
COMMENTS
Right border = n*mu(n) = A055615.
Row sums = A023900: (1, -1, -2, -1, -4, 2, -6,...).
LINKS
FORMULA
Triangle read by rows, A051731 * A128407 * A127648, 1<=k<=n
EXAMPLE
First few rows of the triangle =
1;
1, -2;
1, 0, -3;
1, -2, 0, 0;
1, 0, 0, 0, -5;
1, -2, -3, 0, 0, 6;
1, 0, 0, 0, 0, 0, -7;
...
MAPLE
seq(seq(`if`(i mod j = 0, j*numtheory:-mobius(j), 0), j=1..i), i=1..20); # Robert Israel, Sep 07 2014
MATHEMATICA
Table[If[Divisible[n, k], k MoebiusMu[k], 0], {n, 1, 14}, {k, 1, n}] (* Jean-François Alcover, Jun 19 2019 *)
PROG
(Sage)
A143256_row = lambda n: [k*moebius(k) if k.divides(n) else 0 for k in (1..n)]
for n in (1..10): print(A143256_row(n)) # Peter Luschny, Jan 05 2018
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Aug 02 2008
STATUS
approved