login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, matrix multiplication A051731 * A128407 * A127648, 1<=k<=n.
2

%I #13 Jun 19 2019 10:04:33

%S 1,1,-2,1,0,-3,1,-2,0,0,1,0,0,0,-5,1,-2,-3,0,0,6,1,0,0,0,0,0,-7,1,-2,

%T 0,0,0,0,0,0,1,0,-3,0,0,0,0,0,0,1,-2,0,0,-5,0,0,0,0,10,1,0,0,0,0,0,0,

%U 0,0,0,-11,1,-2,-3,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-13,1,-2,0,0,0,0,-7,0,0,0,0,0,0,14

%N Triangle read by rows, matrix multiplication A051731 * A128407 * A127648, 1<=k<=n.

%C Right border = n*mu(n) = A055615.

%C Row sums = A023900: (1, -1, -2, -1, -4, 2, -6,...).

%H Robert Israel, <a href="/A143256/b143256.txt">Table of n, a(n) for n = 1..9870</a>

%F Triangle read by rows, A051731 * A128407 * A127648, 1<=k<=n

%e First few rows of the triangle =

%e 1;

%e 1, -2;

%e 1, 0, -3;

%e 1, -2, 0, 0;

%e 1, 0, 0, 0, -5;

%e 1, -2, -3, 0, 0, 6;

%e 1, 0, 0, 0, 0, 0, -7;

%e ...

%p seq(seq(`if`(i mod j = 0, j*numtheory:-mobius(j),0), j=1..i),i=1..20); # _Robert Israel_, Sep 07 2014

%t Table[If[Divisible[n, k], k MoebiusMu[k], 0], {n, 1, 14}, {k, 1, n}] (* _Jean-François Alcover_, Jun 19 2019 *)

%o (Sage)

%o A143256_row = lambda n: [k*moebius(k) if k.divides(n) else 0 for k in (1..n)]

%o for n in (1..10): print(A143256_row(n)) # _Peter Luschny_, Jan 05 2018

%Y Cf. A008683, A055615, A051731, A128407, A127648, A023900.

%K tabl,sign

%O 1,3

%A _Gary W. Adamson_, Aug 02 2008