login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142955
Primes of the form 3*x^2 + 4*x*y - 5*y^2 (as well as of the form 3*x^2 + 10*x*y + 2*y^2).
1
2, 3, 19, 31, 59, 67, 71, 79, 103, 107, 127, 151, 167, 179, 211, 223, 227, 307, 331, 379, 383, 431, 439, 487, 523, 547, 563, 599, 607, 659, 683, 743, 751, 787, 811, 827, 839, 863, 887, 907, 911, 971, 983, 991, 1019, 1039, 1063, 1091, 1123, 1171, 1231, 1283
OFFSET
1,1
COMMENTS
Discriminant = 76. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(4) = 31 because we can write 31 = 3*3^2 + 4*3*2 - 5*2^2 (or 31 = 3*1^2 + 10*1*2 + 2*2^2).
CROSSREFS
Cf. A142956 (d=76). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Sequence in context: A265799 A058912 A040145 * A213896 A088790 A283186
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jul 14 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
Edited by M. F. Hasler, Feb 18 2022
STATUS
approved