OFFSET
0,5
COMMENTS
In each row, two bisections count up.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
From G. C. Greubel, Sep 17 2024: (Start)
T(n, k) = (1/2)*((1+(-1)^k)*floor(k/2) + (1-(-1)^k)*(-n + floor((k - 1)/2)) ).
T(n, n) = A130472(n).
T(2*n, n) = (-1)^n*A014682(n).
Sum_{k=0..n} T(n, k) = (-1)*A008794(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000217(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A159915(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/32)*(6*n^2 + 6*n - 5 + (-1)^n*(2*n + 1) + 2*(1 - i)*(-i)^n + 2*(1 + i)*i^n). (End)
EXAMPLE
Triangle begins as:
0;
0, -1;
0, -2, 1;
0, -3, 1, -2;
0, -4, 1, -3, 2;
0, -5, 1, -4, 2, -3;
0, -6, 1, -5, 2, -4, 3;
MAPLE
A141543 := proc(n, k) if type(k, 'even') then k/2; else (k-1)/2-n ; end if; end proc:
seq(seq(A141543(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Jul 07 2011
MATHEMATICA
Flatten[Table[If[EvenQ[k], k/2, (k-1)/2-n], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Sep 24 2013 *)
PROG
(Magma)
A141543:= func< n, k | ((k+1) mod 2)*Floor(k/2) + (k mod 2)*(-n + Floor((k-1)/2)) >;
[A141543(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2024
(SageMath)
def A141543(n, k): return ((k+1)%2)*(k//2) + (k%2)*(-n + ((k-1)//2))
flatten([[A141543(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Sep 17 2024
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, Aug 16 2008
STATUS
approved