The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141541 A triangular sequence of coefficients in a renormalized fractional factorial recursion ( a neo -combinatorial process): a(n) = A000045[n]; Renormalized factorial; f(n) = a(n)*n*f(n - 1)/a(n - 1); Neo-combination: t(n, m) = f(n)/(f(n - m)*f(m)). 0
 1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 10, 18, 10, 1, 1, 12, 29, 29, 12, 1, 1, 14, 44, 56, 44, 14, 1, 1, 17, 61, 99, 99, 61, 17, 1, 1, 19, 82, 158, 198, 158, 82, 19, 1, 1, 22, 105, 236, 357, 357, 236, 105, 22, 1, 1, 24, 131, 338, 594, 713, 594, 338, 131, 24, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums: {1, 2, 6, 18, 40, 84, 174, 356, 718, 1442, 2889}. LINKS FORMULA a(n) = A000129[n]; Renormalized factorial; f(n) = a(n)*n*f(n - 1)/a(n - 1); Neo-combination: t(n, m) = f(n)/(f(n - m)*f(m)) EXAMPLE {1}, {1, 1}, {1, 4, 1}, {1, 8, 8, 1}, {1, 10, 18, 10, 1}, {1, 12, 29, 29, 12, 1}, {1, 14, 44, 56, 44, 14, 1}, {1, 17, 61, 99, 99, 61, 17, 1}, {1, 19, 82, 158, 198, 158, 82, 19, 1}, {1, 22, 105, 236, 357, 357, 236, 105, 22, 1}, {1, 24, 131, 338, 594, 713, 594, 338, 131, 24, 1} MATHEMATICA Clear[a, n, f, g] a[0] = 0; a[1] = 1; a[n_] := a[n] = 2*a[n - 1] + a[n - 2] Table[a[n], {n, 0, 30}] (* renormalized fractional factorial recursion*) f[0] = 1; f[1] = 1; f[n_] := f[n] = a[n]*n*f[n - 1]/a[n - 1]; Table[f[n], {n, 0, 10}]; g[n_, m_] := g[n, m] = f[n]/(f[n - m]*f[m]); Table[Table[Round[g[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Cf. A000129. Sequence in context: A051455 A289511 A158687 * A177947 A132789 A319251 Adjacent sequences:  A141538 A141539 A141540 * A141542 A141543 A141544 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Aug 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 10:41 EDT 2020. Contains 334699 sequences. (Running on oeis4.)