login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141516
The main diagonal of the array of A141425 and its higher order differences.
1
1, 2, 1, -7, -23, -1, 7, -103, -251, -133, -149, -1387, -3143, -3001, -4913, -19663, -42611, -55693, -101549, -291667, -612863, -960001, -1831433, -4460023, -9185771, -15980053, -31162949, -69500347, -141392183, -261261001
OFFSET
0,2
COMMENTS
The sequence A141425 and higher order differences in subsequent rows starts (see A141533):
1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4,...
1, 2, 1, 2, 1,-7, 1, 2, 1, 2, 1,-7, 1, 2, 1, 2,...
1,-1, 1, -1, -8, 8, 1,-1, 1, -1, -8, 8, 1, -1,..
-2, 2,-2, -7, 16,-7,-2, 2,-2, -7, 16,-7, -2,..
4,-4,-5, 23,-23, 5, 4,-4,-5, 23,-23, 5, 4,..
-8,-1,28,-46, 28,-1,-8,-1,28,-46, 28,-1,..
Reading downwards the main diagonal of this array defines the sequence.
FORMULA
a(n) = ( -3*(-1)^n -2^n +3*(-1)^(floor((n-1)/2))*A108411(n) )/2, n>0. - R. J. Mathar, Mar 08 2011
a(2n)+a(2n+1)= -A002023(n-1) = -3*A081294(n), n>0.
a(4n)+a(4n+1)+a(4n+2)+a(4n+3) = -120*16^(n-1), n>0.
a(4n+2)+a(4n+3)+a(4n+4)+a(4n+5) = -30*A001025(n).
G.f. x*(-2+x+6*x^2+21*x^3) / ( (2*x-1)*(1+x)*(3*x^2+1) ). - R. J. Mathar, Mar 08 2011
MAPLE
A108411 := proc(n) 3^floor(n/2) ; end proc:
A141516 := proc(n) if n = 0 then 1; else (-3*(-1)^n-2^n+3*(-1)^(floor((n-1)/2))*A108411(n))/2 ; end if; end proc: # R. J. Mathar, Mar 08 2011
MATHEMATICA
LinearRecurrence[{1, -1, 3, 6}, {1, 2, 1, -7, -23}, 30] (* Harvey P. Dale, Nov 23 2022 *)
CROSSREFS
Sequence in context: A012893 A013075 A009281 * A235378 A214327 A320519
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Aug 11 2008
STATUS
approved