login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141519
Period 10: repeat [-1, 1, -3, 7, -5, 3, -7, 9, -9, 5].
0
-1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3
OFFSET
0,3
COMMENTS
It appears that abs(a(n)) = abs(A001469(n+1)) mod 10.
It also appears that abs(a(n)) = abs(A228767(n+4)) mod 10. - Michel Marcus, Sep 04 2013
FORMULA
G.f.: ( -1-3*x^2+4*x^3+2*x^5-5*x^6-5*x^8-x^4+4*x^7 ) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1) ). - R. J. Mathar, Oct 08 2011
a(n) = - Sum_{k=1..9} a(n-k). - Wesley Ivan Hurt, May 27 2021
MATHEMATICA
PadRight[{}, 120, {-1, 1, -3, 7, -5, 3, -7, 9, -9, 5}] (* Harvey P. Dale, Mar 03 2023 *)
CROSSREFS
Sequence in context: A021910 A331632 A094124 * A228000 A029946 A200285
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Aug 11 2008
STATUS
approved