login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141220
Write the n-th nonprime (A018252(n)) as a product of primes; increase one copy of the largest prime by 2 and decrease one copy of the smallest prime by 1, multiply the resulting numbers.
4
1, 4, 5, 8, 10, 7, 10, 9, 14, 16, 15, 14, 18, 13, 20, 28, 15, 30, 18, 21, 32, 26, 19, 36, 30, 21, 30, 28, 27, 26, 42, 25, 40, 54, 35, 38, 30, 45, 52, 36, 42, 31, 42, 33, 54, 64, 60, 39, 38, 50, 45, 60, 39, 70, 42, 78, 45, 56, 90, 43, 54, 76, 45, 62, 52, 63, 90
OFFSET
1,2
EXAMPLE
1st nonprime = 1 (has no prime factors); a(1) = empty product = 1.
2nd nonprime = 4 = (p(max)=2)*(p(min)=2); a(2) = (2+2)*(2-1) = 4*1 = 4.
3rd nonprime = 6 = (p(max)=3)*(p(min)=2); a(3) = (3+2)*(2-1) = 5*1 = 5.
4th nonprime = 8 = (p(max)=2)*(p=2)*(p(min)=2); a(4) = (2+2)*2*(2-1) = 4*2*1 = 8.
MAPLE
From R. J. Mathar, Mar 29 2010: (Start)
A006530 := proc(n) if n = 1 then 1; else max(op(numtheory[factorset](n))) ; end if; end proc:
A020639 := proc(n) if n = 1 then 1; else min(op(numtheory[factorset](n))) ; end if; end proc:
A002808 := proc(n) if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc:
A052369 := proc(n) A006530(A002808(n)) ; end proc: A056608 := proc(n) A020639(A002808(n)) ; end proc:
A141220 := proc(n) if n = 0 then 1; else c := A002808(n) ; hi := A052369(n) ; lo := A056608(n) ; c*(hi+2)*(lo-1)/lo/hi ; end if; end proc:
printf("1, ") ; for n from 1 to 400 do a := A141220(n) ; if not isprime(a) then printf("%d, ", a) ; end if; end do: (End)
CROSSREFS
Sequence in context: A268128 A064394 A346457 * A340762 A092022 A346302
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entry revised by Jon E. Schoenfield, Mar 09 2014, following revision of A141218 by N. J. A. Sloane
STATUS
approved