login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346457
a(n) is the smallest number k such that |Sum_{j=1..k} (-1)^omega(j)| = n, where omega(j) is the number of distinct primes dividing j.
3
1, 4, 5, 8, 9, 32, 77, 88, 93, 94, 95, 96, 99, 100, 119, 124, 147, 148, 161, 162, 189, 206, 207, 208, 209, 210, 213, 214, 215, 216, 217, 218, 219, 226, 329, 330, 333, 334, 335, 394, 395, 416, 417, 424, 425, 428, 489, 514, 515, 544, 545, 546, 549, 554, 579, 584, 723, 724, 725, 800
OFFSET
1,2
LINKS
FORMULA
a(n) = min {k : |Sum_{j=1..k} mu(rad(j))| = n}, where mu is the Moebius function and rad is the squarefree kernel.
MAPLE
N:= 10000: # for values <= N
omega:= n -> nops(numtheory:-factorset(n)):
R:= map(n -> (-1)^omega(n), [$1..10000]):
S:= map(abs, ListTools:-PartialSums(R)):
m:= max(S):
V:= Vector(m):
for i from 1 to N do if S[i] > 0 and V[S[i]] = 0 then V[S[i]]:= i fi od:
convert(V, list); # Robert Israel, Oct 30 2023
MATHEMATICA
Table[k=1; While[Abs[Sum[(-1)^PrimeNu@j, {j, k}]]!=n, k++]; k, {n, 30}] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
PROG
(PARI) a(n) = my(k=1); while (abs(sum(j=1, k, (-1)^omega(j))) != n, k++); k; \\ Michel Marcus, Jul 19 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 19 2021
STATUS
approved