login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051402
Inverse Mertens function: smallest k such that |M(k)| = n, where M(x) is Mertens's function A002321.
14
1, 5, 13, 31, 110, 114, 197, 199, 443, 659, 661, 665, 1105, 1106, 1109, 1637, 2769, 2770, 2778, 2791, 2794, 2795, 2797, 2802, 2803, 6986, 6987, 7013, 7021, 8503, 8506, 8507, 8509, 8510, 8511, 9749, 9822, 9823, 9830, 9831, 9833, 9857, 9861, 19043
OFFSET
1,2
COMMENTS
From Torlach Rush, Oct 11 2018: (Start)
For k <= 10^7:
- a(n) is squarefree.
- if a(n) > M(k) then A008683(a(n)) is negative.
- if a(n) = M(k) then A008683(a(n)) is positive. (End)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
EXAMPLE
M(31) = -4, smallest one equal to +-4.
MAPLE
with(numtheory): k := 0: s := 0: for n from 1 to 20000 do s := s+mobius(n): if abs(s) > k then k := abs(s): print(n); fi; od:
MATHEMATICA
a = s = 0; Do[s = s + MoebiusMu[n]; If[ Abs[s] > a, a = Abs[s]; Print[n]], {n, 1, 20000}]
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a051402 = (+ 1) . fromJust . (`elemIndex` ms) where
ms = map (abs . a002321) [1..]
-- Reinhard Zumkeller, Dec 26 2012
(PARI) M(n)=sum(k=1, n, moebius(k));
print1(1, ", "); c=M(1); n=2; while(n<10^3, if(abs(M(n))>c, print1(n, ", "); c=abs(M(n))); n++) \\ Derek Orr, Jun 14 2016
(PARI) M(n) = sum(k=1, n, moebius(k));
a(n) = my(k = 1, s = moebius(1)); while (abs(s) != n, k++; s += moebius(k)); k; \\ Michel Marcus, Oct 12 2018
CROSSREFS
Essentially same as A060434 except for initial terms.
Sequence in context: A007708 A146609 A121129 * A147022 A147014 A146376
KEYWORD
nonn,nice
AUTHOR
STATUS
approved