login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse Mertens function: smallest k such that |M(k)| = n, where M(x) is Mertens's function A002321.
14

%I #45 Nov 01 2023 09:57:49

%S 1,5,13,31,110,114,197,199,443,659,661,665,1105,1106,1109,1637,2769,

%T 2770,2778,2791,2794,2795,2797,2802,2803,6986,6987,7013,7021,8503,

%U 8506,8507,8509,8510,8511,9749,9822,9823,9830,9831,9833,9857,9861,19043

%N Inverse Mertens function: smallest k such that |M(k)| = n, where M(x) is Mertens's function A002321.

%C From _Torlach Rush_, Oct 11 2018: (Start)

%C For k <= 10^7:

%C - a(n) is squarefree.

%C - if a(n) > M(k) then A008683(a(n)) is negative.

%C - if a(n) = M(k) then A008683(a(n)) is positive. (End)

%H Charles R Greathouse IV, <a href="/A051402/b051402.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)

%e M(31) = -4, smallest one equal to +-4.

%p with(numtheory): k := 0: s := 0: for n from 1 to 20000 do s := s+mobius(n): if abs(s) > k then k := abs(s): print(n); fi; od:

%t a = s = 0; Do[s = s + MoebiusMu[n]; If[ Abs[s] > a, a = Abs[s]; Print[n]], {n, 1, 20000}]

%o (Haskell)

%o import Data.List (elemIndex)

%o import Data.Maybe (fromJust)

%o a051402 = (+ 1) . fromJust . (`elemIndex` ms) where

%o ms = map (abs . a002321) [1..]

%o -- _Reinhard Zumkeller_, Dec 26 2012

%o (PARI) M(n)=sum(k=1,n,moebius(k));

%o print1(1,", "); c=M(1); n=2; while(n<10^3,if(abs(M(n))>c,print1(n,", "); c=abs(M(n))); n++) \\ _Derek Orr_, Jun 14 2016

%o (PARI) M(n) = sum(k=1, n, moebius(k));

%o a(n) = my(k = 1, s = moebius(1)); while (abs(s) != n, k++; s += moebius(k)); k; \\ _Michel Marcus_, Oct 12 2018

%Y Cf. A002321, A008683, A051400, A051401.

%Y Essentially same as A060434 except for initial terms.

%K nonn,nice

%O 1,2

%A _Jud McCranie_