login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141182
Primes of the form x^2+6*x*y-2*y^2 (as well as of the form 5*x^2+8*x*y+y^2).
7
5, 37, 53, 89, 97, 113, 137, 157, 181, 229, 257, 269, 313, 317, 353, 389, 397, 401, 421, 433, 449, 509, 521, 577, 617, 641, 653, 661, 709, 757, 773, 797, 829, 881, 929, 977, 1013, 1021, 1049, 1061, 1093, 1109, 1153, 1181, 1193, 1213, 1237, 1277, 1301, 1321, 1373
OFFSET
1,1
COMMENTS
Discriminant = 44. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
Also, primes of the form u^2 - 11v^2. The transformation {u, v} = {x+3y, y} yields the form in the title. - Tito Piezas III, Dec 28 2008
Also primes p == 1 (mod 4) and == 1, 3, 4, 5 or 9 (mod 11). - Juan Arias-de-Reyna, Mar 20 2011.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(3)=53 because we can write 53=5^2+6*5*1-2*1^2 (or 53=5*1^2+8*1*4+4^2)
MATHEMATICA
Select[Prime[Range[250]], MatchQ[Mod[#, 44], Alternatives[1, 5, 9, 25, 37]] &] (* Jean-François Alcover, Oct 28 2016 *)
PROG
(PARI) isA141182(p) = p%4==1 & issquare(Mod(p, 11)) \\ M. F. Hasler, Mar 20 2011
CROSSREFS
Cf. A141183 (d=44), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
Cf. also A243166.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Sequence in context: A144960 A173826 A071680 * A127589 A244374 A238477
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (lourdescm84(AT)hotmail.com), Jun 12 2008
STATUS
approved