|
|
A141018
|
|
a(n) is the largest number in the n-th row of triangle A140997.
|
|
4
|
|
|
1, 1, 2, 4, 8, 15, 28, 52, 96, 177, 345, 694, 1386, 2751, 5431, 10672, 20885, 40724, 79153, 153402, 296528, 571845, 1129293, 2264749, 4527029, 9021498, 17926740, 35527082, 70230422, 138504765, 272545323, 535184340, 1048842743, 2051669285, 4006253136, 7954830148
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also the largest number of the n-th row of A140994.
|
|
LINKS
|
Table of n, a(n) for n=0..35.
Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...
|
|
EXAMPLE
|
The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 15 9 4 2 1 is a(5) = 15.
The largest number of 1 28 19 9 4 2 1 is a(6) = 28.
The largest number of 1 52 40 19 9 4 2 1 is a(7) = 52.
|
|
MAPLE
|
A140997 := proc(n, k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; else procname(n-1, k)+procname(n-2, k)+procname(n-3, k)+procname(n-3, k-1) ; fi; end:
A141018 := proc(n) max(seq(A140997(n, k), k=0..n)) ; end: for n from 0 to 60 do printf("%d, ", A141018(n)) ; od: # R. J. Mathar, Sep 19 2008
|
|
CROSSREFS
|
Cf. A007318, A140993, A140994, A140995, A140996, A140997, A140998, A141020, A141021.
Sequence in context: A073769 A008937 A128805 * A049864 A239554 A268393
Adjacent sequences: A141015 A141016 A141017 * A141019 A141020 A141021
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Jul 11 2008
|
|
EXTENSIONS
|
Partially edited by N. J. A. Sloane, Jul 18 2008
Simplified definition, corrected from a(12) on and extended by R. J. Mathar, Sep 19 2008
|
|
STATUS
|
approved
|
|
|
|