login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A049864
a(n) = Sum_{k=0,1,2,...,n-4,n-2,n-1} a(k); a(n-3) is not a summand, with a(0)=a(1)=a(2)=1.
11
1, 1, 1, 2, 4, 8, 15, 28, 52, 97, 181, 338, 631, 1178, 2199, 4105, 7663, 14305, 26704, 49850, 93058, 173717, 324288, 605368, 1130077, 2109583, 3938086, 7351463, 13723420, 25618337, 47823297, 89274637, 166654357, 311103754, 580756168, 1084132616
OFFSET
0,4
COMMENTS
Number of binary sequences of length n-2 with no subsequence 0110. E.g., a(7)=28 because among the 32 (=2^5) binary sequences of length 5 only 01100,01101,00110 and 10110 contain the subsequence 0110. - Emeric Deutsch, May 04 2006
This is a_3(n) in the Doroslovacki reference. - Max Alekseyev, Jun 26 2007
Column 0 of A118890. - Emeric Deutsch, May 04 2006
FORMULA
a(n) = 2*a(n-1) - a(n-3) + a(n-4); 4 initial terms required.
G.f.: (1+z)*(1-z)^2/(1 - 2z + z^3 - z^4). - Emeric Deutsch, May 04 2006
MAPLE
(With a different offset:) a[0]:=1:a[1]:=2:a[2]:=4:a[3]:=8: for n from 4 to 35 do a[n]:=2*a[n-1]-a[n-3]+a[n-4] od: seq(a[n], n=0..35); # Emeric Deutsch, May 04 2006
MATHEMATICA
LinearRecurrence[{2, 0, -1, 1}, {1, 1, 1, 2}, 40] (* Harvey P. Dale, Sep 24 2013 *)
CROSSREFS
KEYWORD
nonn,easy,changed
EXTENSIONS
Edited by N. J. A. Sloane, Nov 16 2007, at the suggestion of Max Alekseyev
STATUS
approved