login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049864 a(n) = Sum_{k=0,1,2,...,n-4,n-2,n-1} a(k); a(n-3) is not a summand; 3 initial terms required. 11
1, 1, 1, 2, 4, 8, 15, 28, 52, 97, 181, 338, 631, 1178, 2199, 4105, 7663, 14305, 26704, 49850, 93058, 173717, 324288, 605368, 1130077, 2109583, 3938086, 7351463, 13723420, 25618337, 47823297, 89274637, 166654357, 311103754, 580756168, 1084132616 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of binary sequences of length n-2 with no subsequence 0110. E.g., a(7)=28 because among the 32 (=2^5) binary sequences of length 5 only 01100,01101,00110 and 10110 contain the subsequence 0110. - Emeric Deutsch, May 04 2006

This is a_3(n) in the Doroslovacki reference. - Max Alekseyev, Jun 26 2007

Column 0 of A118890. - Emeric Deutsch, May 04 2006

LINKS

Table of n, a(n) for n=0..35.

R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.

Index entries for linear recurrences with constant coefficients, signature (2,0,-1,1).

FORMULA

a(n) = 2*a(n-1) - a(n-3) + a(n-4); 4 initial terms required.

G.f.: (1+z)*(1-z)^2/(1 - 2z + z^3 - z^4). - Emeric Deutsch, May 04 2006

MAPLE

(With a different offset:) a[0]:=1:a[1]:=2:a[2]:=4:a[3]:=8: for n from 4 to 35 do a[n]:=2*a[n-1]-a[n-3]+a[n-4] od: seq(a[n], n=0..35); # Emeric Deutsch, May 04 2006

MATHEMATICA

LinearRecurrence[{2, 0, -1, 1}, {1, 1, 1, 2}, 40] (* Harvey P. Dale, Sep 24 2013 *)

CROSSREFS

Cf. A005251, A049858, A118890, A118891, A118892.

Sequence in context: A008937 A128805 A141018 * A239554 A268393 A118870

Adjacent sequences:  A049861 A049862 A049863 * A049865 A049866 A049867

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Edited by N. J. A. Sloane, Nov 16 2007, at the suggestion of Max Alekseyev

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:29 EST 2022. Contains 350514 sequences. (Running on oeis4.)