login
A049863
a(n) = Sum{a(k): k=0,1,2,...,n-4,n-2,n-1}; a(n-3) is not a summand; initial terms are 0,3,4.
1
0, 3, 4, 7, 11, 21, 39, 74, 138, 258, 481, 898, 1676, 3129, 5841, 10904, 20355, 37998, 70933, 132415, 247187, 461439, 861396, 1608020, 3001788, 5603619, 10460614, 19527460, 36453089, 68049183, 127031520, 237137411, 442678728, 826375119, 1542644347, 2879747377
OFFSET
0,2
FORMULA
a(n) = 2*a(n-1) - a(n-3) + a(n-4).
G.f.: (x^3+2x^2-3x)/(x^4-x^3+2x-1). - Harvey P. Dale, Apr 26 2011
MATHEMATICA
LinearRecurrence[{2, 0, -1, 1}, {0, 3, 4, 7}, 40] (* or *) CoefficientList[ Series[(x^3+2x^2-3x)/(x^4-x^3+2x-1), {x, 0, 50}], x] (* Harvey P. Dale, Apr 26 2011 *)
CROSSREFS
Sequence in context: A378275 A361907 A072255 * A025068 A049928 A002364
KEYWORD
nonn,easy,changed
STATUS
approved