login
A049866
a(n) = Sum_{a(k): k=0,1,2,...,n-4,n-2,n-1}; a(n-3) is not a summand; initial terms are 1,1,3.
0
1, 1, 3, 4, 8, 14, 27, 50, 94, 175, 327, 610, 1139, 2126, 3969, 7409, 13831, 25819, 48198, 89974, 167960, 313541, 585306, 1092626, 2039671, 3807577, 7107834, 13268623, 24769340, 46238423, 86316057, 161131397, 300793711, 561509788, 1048204236, 1956746158, 3652776239
OFFSET
0,3
FORMULA
a(n) = 2*a(n-1) - a(n-3) + a(n-4).
G.f.: (x^3-x^2+x-1)/(x^4-x^3+2*x-1).
MATHEMATICA
LinearRecurrence[{2, 0, -1, 1}, {1, 1, 3, 4}, 40] (* Harvey P. Dale, Jul 28 2019 *)
CROSSREFS
Sequence in context: A136425 A331330 A005907 * A118355 A026632 A332985
KEYWORD
nonn,easy,changed
STATUS
approved