login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140993
Triangle G(n, k) read by rows, for 1 <= k <= n, where G(n, n) = G(n+1, 1) = 1, G(n+2, 2) = 2, G(n+3, m) = G(n+1, m-1) + G(n+1, m-2) + G(n+2, m-1) for n >= 1 and m = 3..(n+2).
24
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 11, 12, 1, 1, 2, 5, 12, 23, 20, 1, 1, 2, 5, 12, 28, 46, 33, 1, 1, 2, 5, 12, 29, 63, 89, 54, 1, 1, 2, 5, 12, 29, 69, 137, 168, 88, 1, 1, 2, 5, 12, 29, 70, 161, 289, 311, 143, 1, 1, 2, 5, 12, 29, 70, 168, 367, 594, 567, 232, 1, 1, 2, 5, 12, 29, 70, 169, 399, 817, 1194, 1021, 376, 1
OFFSET
1,5
COMMENTS
From Petros Hadjicostas, Jun 10 2019: (Start)
Let b(m) = lim_{n -> infinity} G(n, m) for each m >= 1. Then b(1) = 1, b(2) = 2, and b(m) = 2*b(m-1) + b(m-2) for m >= 3. (The existence of the limit can be proved by induction on m.) This means b(m) = A000129(m) for m >= 1 (known as the Pell numbers).
If we want to get the second main diagonal, we let c(n) = G(n+1, n) for n >= 1. Then c(n+2) = G(n+3, n+2) = G(n+1, n+1) + G(n+1, n) + G(n+2, n+1) = 1 + c(n) + c(n+1) with c(1) = G(2, 1) = 1 and c(2) = G(3, 2) = 2, which implies that c(n) = A000071(n+2) = Fibonacci(n+2) - 1 for n >= 1.
This array is the mirror image of A140998 (except for a shifting of the indices by 1). Thus, G(n, k) = A140998(n - 1, n - k) for 1 <= k <= n. This array has index of obliqueness e = 1, while array A140998 has index of obliqueness e = 0. Both arrays have the same index of asymmetry (s = 1). (End)
From Petros Hadjicostas, Feb 09 2021: (Start)
One of the two rectangular versions, say (RA(n,k): n,k >= 0), of this triangular array (G(n,k): 1 <= k <= n) is given by RA(n,k) = G(n+k-1,k) for n,k >= 1. Conversely, G(n,k) = RA(n-k+1, k) for 1 <= k <= n. (This assumes that the triangle G(n,k) is read from the array RA(n,k) by ascending antidiagonals.)
Note that [o.g.f of RA](x,y) = x*[o.g.f. of G](x, y/x) and [o.g.f of G](x,y) = x^(-1)*[o.g.f of RA](x,x*y).
The other rectangular version, say (RD(n,k): n,k >= 0), of this triangular array (G(n,k): 1 <= k <= n) is given by RD(n,k) = RA(k,n) = G(n+k-1,n) for n,k >= 1. Conversely, G(n,k) = RD(k,n-k+1) for 1 <= k <= n. (This assumes that the triangle G(n,k) is read from the array RD(n,k) by descending antidiagonals.)
Note that [o.g.f of RD](x,y) = y*[o.g.f. of G](y,x/y) and [o.g.f of G](x,y) = x^(-1)*[o.g.f of RD](x*y, x). (End)
FORMULA
From Petros Hadjicostas, Jun 10 2019: (Start)
G(n, k) = A140998(n - 1, n - k) for 1 <= k <= n.
Bivariate o.g.f.: Sum_{n >= 1, k >= 1} G(n, k)*x^n*y^k = x*y*(1 - x*y -x^2*y^2 + x^3*y^2)/((1 - x) * (1 - x*y) * (1 - x*y - x^2*y - x^2*y^2)). (Here, we let G(n, k) = 0 when 1 <= n < k.)
To get the row sums, we let y = 1 in the above bivariate g.f. and simplify. We get x/(1 - 2*x), which is the g.f. of sequence (A000079(n-1): n >= 1) = (2^(n-1): n >= 1). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
We give formulas about the rectangular array RA(n,k).
Initial conditions: RA(1,n) = RA(n+1,1) = 1 and RA(n+1,2) = 2 for n >= 1.
Recurrence: RA(n,k) = RA(n-1,k-1) + RA(n,k-2) + RA(n,k-1) for n >= 2 and k >= 3.
The main diagonal of the array is RA(n,n) = A000129(n) (Pell numbers).
Bivariate o.g.f: Sum_{n,k >= 1} RA(n,m)*x^n*y^k = x*y*(x*y^2 - y^2 - y + 1)/((1 - x)*(1 - y)*(-x*y - y^2 - y + 1)).
To obtain formulas about the other rectangular array, RD(n,k), we use the equations RD(n,k) = RA(k,n) for n,k >= 1 and [o.g.f. of RD](x,y) = [o.g.f. of RA](y,x). (End)
EXAMPLE
Triangle G(n,k) (with rows for n >= 1 and columns for 1 <= k <= n) begins:
1
1 1
1 2 1
1 2 4 1
1 2 5 7 1
1 2 5 11 12 1
1 2 5 12 23 20 1
1 2 5 12 28 46 33 1
1 2 5 12 29 63 89 54 1
1 2 5 12 29 69 137 168 88 1
1 2 5 12 29 70 161 289 311 143 1
1 2 5 12 29 70 168 367 594 567 232 1
1 2 5 12 29 70 169 399 817 1194 1021 376 1
1 2 5 12 29 70 169 407 934 1778 2355 1820 609 1
...
From Petros Hadjicostas, Feb 09 2021: (Start)
Rectangular array RA(n,k) (with rows for n >= 1 and columns for k >= 1) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 7, 12, 20, 33, 54, 88, 143, ...
1, 2, 5, 11, 23, 46, 89, 168, 311, 567, ...
1, 2, 5, 12, 28, 63, 137, 289, 594, 1194, ...
1, 2, 5, 12, 29, 69, 161, 367, 817, 1778, ...
1, 2, 5, 12, 29, 70, 168, 399, 934, 2150, ...
1, 2, 5, 12, 29, 70, 169, 407, 975, 2316, ...
1, 2, 5, 12, 29, 70, 169, 408, 984, 2367, ...
1, 2, 5, 12, 29, 70, 169, 408, 985, 2377, ...
1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ...
...
Reading the array RA(n,k) by ascending antidiagonals, we get triangle G(n,k) above. (End)
MAPLE
A140993 := proc(n, k) if k = n then 1; elif k = 1 then 1; elif k = 2 then 2; else procname(n-2, k-1)+procname(n-2, k-2)+procname(n-1, k-1) ; end if; end proc: seq(seq(A140993(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Apr 28 2010
MATHEMATICA
t[n_, k_] := If[k == n, 1, If[k == 1, 1, If[k == 2, 2, t[n - 2, k - 1] + t[n - 2, k - 2] + t[n - 1, k - 1]]]]; Flatten[Table[ t[n, k], {n, 13}, {k, n}]] (* Robert G. Wilson v, Dec 22 2011 *)
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Entries checked by R. J. Mathar, Apr 28 2010
Name and offset edited by Petros Hadjicostas, Jun 10 2019
STATUS
approved