|
|
A141019
|
|
a(n) is the largest number in the n-th row of triangle A140996.
|
|
1
|
|
|
1, 1, 2, 4, 8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 84752, 169880, 340013, 679604, 1356641, 2704954, 5387340, 10718620, 21304973, 42308331, 83945336, 166423276, 329683867, 652627294, 1291020297, 2552209710, 5042305104
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also the largest number in the n-th row of A140995.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 16 8 4 2 1 is a(5) = 16.
The largest number of 1 31 17 8 4 2 1 is a(6) = 31.
|
|
MAPLE
|
A140996 := proc(n, k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; else procname(n-1, k)+procname(n-2, k) +procname(n-3, k)+procname(n-4, k)+procname(n-4, k-1) ; fi; end:
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Simplified definition and extended by R. J. Mathar, Sep 19 2008
|
|
STATUS
|
approved
|
|
|
|