The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139695 a(1)=1. a(n) = the smallest integer > a(n-1) such that |d(a(n)) - d(a(n-1))| = n-1, where d(m) = the number of positive divisors of m. 2
1, 2, 6, 64, 121, 128, 131, 196, 65536, 65541, 65572, 117649, 262144, 262148, 262192, 279841, 287296, 287299, 287744, 292681, 4194304, 4194319, 4194325, 70368744177664, 2384185791015625, 2384185791015648, 2384185791085568 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(24) > 1400000000. - Robert G. Wilson v, Jun 06 2008
If n-1 >= d(a(n-1)), then d(a(n)) must be n-1 + d(a(n-1)).
LINKS
MAPLE
A139695 := proc(n) option remember ; local a, aprev; if n = 1 then 1; else aprev := A139695(n-1) ; for a from aprev+1 do if abs(numtheory[tau](a)-numtheory[tau](aprev)) = n-1 then RETURN(a) ; fi ; od: fi ; end: for n from 1 do print(A139695(n)) ; od: # R. J. Mathar, May 04 2008
MATHEMATICA
f[1] = 1; f[n_] := f[n] = Block[{da = DivisorSigma[0, f[n - 1]], k = f[n - 1] + 1}, While[ Abs[ DivisorSigma[0, k] - da] + 1 != n, k++; m = k]; k]; Do[ Print[{n, f@n}], {n, 50}]
CROSSREFS
Cf. A139696.
Sequence in context: A145756 A030170 A082640 * A347949 A241590 A052522
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 29 2008, Jun 14 2008
EXTENSIONS
a(10)-a(20) from R. J. Mathar, May 04 2008
a(21)-a(23) from Robert G. Wilson v, Jun 05 2008
a(24)-a(27) from Ray Chandler, Jul 08 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 11:51 EDT 2024. Contains 373407 sequences. (Running on oeis4.)