login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139698 Binomial transform of [1, 25, 25, 25, ...]. 7
1, 26, 76, 176, 376, 776, 1576, 3176, 6376, 12776, 25576, 51176, 102376, 204776, 409576, 819176, 1638376, 3276776, 6553576, 13107176, 26214376, 52428776, 104857576, 209715176, 419430376, 838860776, 1677721576, 3355443176, 6710886376, 13421772776, 26843545576 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The binomial transform of [1, c, c, c, ...] has the terms a(n)=1-c+c*2^(n-1) if the offset 1 is chosen. The o.g.f. of the a(n) is x{1+(c-2)x}/{(2x-1)(x-1)}. This applies to A139634 with c=10, to A139635 with c=11, to A139697 with c=12, to A139698 with c=25 and to A099003, A139700, A139701 accordingly. - R. J. Mathar, May 11 2008
LINKS
FORMULA
A007318 * [1, 25, 25, 25, ...].
a(n) = 25*2^(n-1)-24. - Emeric Deutsch, May 03 2008
a(n) = 2*a(n-1) + 24 (with a(1)=1). - Vincenzo Librandi, Nov 24 2010
a(n) = 3*a(n-1)-2*a(n-2). G.f.: x*(23*x+1) / ((x-1)*(2*x-1)). - Colin Barker, Mar 11 2014
EXAMPLE
a(3) = 76 = (1, 2, 1) dot (1, 25, 25) = (1 + 50 + 25).
MAPLE
seq(25*2^(n-1)-24, n=1..25); # Emeric Deutsch, May 03 2008
MATHEMATICA
LinearRecurrence[{3, -2}, {1, 26}, 40] (* Harvey P. Dale, Jul 25 2021 *)
PROG
(PARI) Vec(x*(23*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Mar 11 2014
(Magma) [25*2^(n-1)-24 : n in [1..40]]; // Wesley Ivan Hurt, Jan 17 2017
CROSSREFS
Sequence in context: A251074 A304657 A262221 * A124719 A126380 A083578
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Apr 29 2008
EXTENSIONS
More terms from Emeric Deutsch, May 03 2008
More terms from Colin Barker, Mar 11 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)