login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082640
Triangle T(m,n) read by rows: unimodular triangulations of the grid P(m,n), m,n > 0, n <= m.
12
2, 6, 64, 20, 852, 46456, 70, 12170, 2822648, 736983568, 252, 182132, 182881520, 208902766788, 260420548144996, 924, 2801708, 12244184472, 61756221742966, 341816489625522032, 1999206934751133055518
OFFSET
1,1
COMMENTS
The limit of T(2,n)^(1/n) is (611+sqrt(73))/36. - Stepan Orevkov, Jan 31 2022
LINKS
Stepan Orevkov, Table of n, a(n) for n = 1..45 (rows 1..9)
V. Kaibel and G. M. Ziegler, Counting Lattice Triangulations, arXiv:math/0211268 [math.CO], 2002.
S. Yu. Orevkov, Counting lattice triangulations: Fredholm equations in combinatorics, arXiv:2201.12827 [math.CO], 2022.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
EXAMPLE
Triangle begins:
2;
6, 64;
20, 852, 46456;
70, 12170, 2822648, 736983568;
...
CROSSREFS
First column is T(m, 1) = A000984(m).
Second column is T(m,2) = A296165(m).
Row sums: A151686. - N. J. A. Sloane, Jun 02 2009
Sequence in context: A134706 A145756 A030170 * A139695 A347949 A241590
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 15 2003
STATUS
approved