login
A082642
Expansion of Molien series for 5-dimensional representation of dihedral group of order 10.
1
1, 0, 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 17, 20, 23, 26, 29, 32, 37, 40, 45, 48, 53, 58, 63, 68, 73, 78, 85, 90, 97, 102, 109, 116, 123, 130, 137, 144, 153, 160, 169, 176, 185, 194, 203, 212, 221, 230, 241, 250, 261, 270, 281, 292, 303, 314, 325, 336, 349, 360, 373, 384, 397, 410
OFFSET
0,4
REFERENCES
M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 149.
FORMULA
G.f.: (1+x^2+x^3+2*x^4+2*x^5+2*x^6+x^7+x^8+x^10)/((1-x^3)*(1-x^4)*(1-x^5)).
G.f.: -(x^6-x^5+2*x^3-x+1) / ((x-1)^3*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Apr 02 2015
MATHEMATICA
CoefficientList[Series[(1 + x^2 + x^3 + 2 x^4 + 2 x^5 + 2 x^6 + x^7 + x^8 +x^10) / ((1 - x^3) (1 - x^4) (1 - x^5)), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 15 2013 *)
PROG
(PARI) Vec(-(x^6-x^5+2*x^3-x+1)/((x-1)^3*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 02 2015
CROSSREFS
Sequence in context: A134950 A018321 A178971 * A217348 A319450 A153013
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 15 2003
STATUS
approved