login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138123
Antidiagonal sums of a triangle of coefficients of recurrences of the Fibonacci sequence.
2
1, 1, 3, 0, 3, 0, 7, 1, 11, 0, 17, 0, 29, 1, 47, 0, 75, 0, 123, 1, 199, 0, 321, 0, 521, 1, 843, 0, 1363, 0, 2207, 1, 3571, 0, 5777, 0, 9349, 1, 15127, 0, 24475, 0, 39603, 1, 64079, 0, 103681, 0, 167761, 1, 271443, 0, 439203, 0, 710647, 1, 1149851, 0, 1860497, 0
OFFSET
1,3
COMMENTS
Consider the irregular sparse triangle T(p,p) = A000204(p), T(p,2p)= -A033999(p)=(-1)^(p+1), T(p,m) =0 else; 1<=m<=2p, p>=1. Then a(n)=sum_{m=1..[2(n+1)/3]} T(1+n-m,m).
The T are coefficients in recurrences f(n)=sum_{m=1..2p} T(p,m)*f(n-m).
The recurrence for p=1, f(n)=f(n-1)+f(n-2), is satisfied by the Fibonacci sequence A000045. The recurrence for p=2, f(n)=3f(n-2)-f(n-4), is satisfied by A005013, A005247, A075091, A075270, A108362 and A135992.
Conjecture: The Fibonacci sequence F obeys all the recurrences: A000045(n)=F(n)= L(p)*F(n-p)-(-1)^p*F(n-2p), any p>0, L=A000204.
[Proof: conjecture is equivalent to the existence of a g.f. of F with denominator 1-L(p)x^p+(-1)^p*x^(2p). Since 1-x-x^2 is known to be a denominator of such a g.f. of A000045, the conjecture is that 1-L(p)*x^p+(-1)^p*x^(2p) can be reduced to 1-x-x^2. One finds: {1-L(p)*x^p+(-1)^p*x^(2p)}/(1-x-x^2) = sum{n=0..p-1}F(n+1)x^n-sum{n=0..p-2} (-1)^(n+p)F(n+1)x^(2p-n-2) is a polynomial with integer coefficients, which is proved by multiplication with 1-x-x^2 and via F(n)+F(n+1)=F(n+2) and L(n)=F(n-1)+F(n+1). - R. J. Mathar, Jul 10 2008].
Conjecture: The Lucas sequence L also obeys all the recurrences: L(n)= L(p)*L(n-p)-(-1)^p*L(n-2p), any p>0, L=A000204.
FORMULA
Row sums: Sum_{m=1..2p} T(p,m) = A098600(p).
Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-4) + a(n-5) + a(n-7) for n > 7.
G.f.: x*(-x^5 - 2*x^2 - x - 1)/((x + 1)*(x^2 - x + 1)*(x^4 + x^2 - 1)). (End)
EXAMPLE
The triangle T(p,m) with Lucas numbers on the diagonal starts
1, 1;
0, 3, 0,-1;
0, 0, 4, 0, 0, 1;
0, 0, 0, 7, 0, 0, 0,-1;
0, 0, 0, 0,11, 0, 0, 0, 0, 1;
The antidiagonal sums are a(1)=1. a(2)=0+1=1. a(3)=0+3=3. a(4)=0+0+0=0. a(5)=0+0+4-1=3.
CROSSREFS
Sequence in context: A331739 A356169 A055945 * A328382 A211868 A127372
KEYWORD
nonn
AUTHOR
Paul Curtz, May 04 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 10 2008
STATUS
approved