login
A328382
a(n) = A276086(n) mod A003415(n), where A276086 is the primorial base exp-function and A003415 is the arithmetic derivative.
15
0, 0, 1, 0, 0, 0, 3, 0, 3, 0, 9, 0, 3, 6, 1, 0, 20, 0, 15, 0, 7, 0, 9, 0, 0, 24, 25, 0, 7, 0, 21, 0, 6, 6, 35, 0, 0, 2, 43, 0, 11, 0, 45, 36, 0, 0, 91, 0, 15, 10, 35, 0, 1, 14, 61, 4, 5, 0, 49, 0, 15, 39, 57, 0, 1, 0, 15, 14, 22, 0, 133, 0, 9, 35, 65, 0, 19, 0, 71, 30, 42, 0, 121, 2, 30, 6, 105, 0, 97, 6, 69, 18, 0, 6, 83, 0, 63, 15, 35, 0, 21
OFFSET
2,7
FORMULA
a(n) = A276086(n) mod A003415(n).
For n >= 2, gcd(a(n), A003415(n)) = A327858(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A328382(n) = (A276086(n)%A003415(n));
CROSSREFS
Cf. A003415, A276086, A327858, A358220, A358221 (positions of 0's), A358232 (of 1's), A358228 (of odd terms), A358229 (of even terms), A358227 (parity of terms).
Cf. also A328386.
Sequence in context: A356169 A055945 A138123 * A211868 A127372 A350950
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 15 2019
STATUS
approved