login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108362
Pair reversal of Fibonacci numbers.
2
1, 0, 2, 1, 5, 3, 13, 8, 34, 21, 89, 55, 233, 144, 610, 377, 1597, 987, 4181, 2584, 10946, 6765, 28657, 17711, 75025, 46368, 196418, 121393, 514229, 317811, 1346269, 832040, 3524578, 2178309, 9227465, 5702887, 24157817, 14930352, 63245986, 39088169, 165580141
OFFSET
0,3
COMMENTS
Here Fibonacci numbers are swapped in pairs, beginning with the pair (F(0),F(1)) changed in (F(1),F(0)). Similar to A135992, which starts switching F(1) and F(2). - Giuseppe Coppoletta, Mar 04 2015
FORMULA
G.f.: (1-x^2+x^3)/(1-3x^2+x^4).
a(n) = 3*a(n-2) - a(n-4) for n>3 with a(0)=1, a(1)=0, a(2)=2, a(3)=1.
a(n) = (sqrt(5)/2-1/2)^n * ((-1)^n/2-sqrt(5)/10)+(sqrt(5)/2+1/2)^n * (sqrt(5)*(-1)^n/10+1/2).
From Giuseppe Coppoletta, Mar 04 2015: (Start)
a(2n) = A000045(2n+1), a(2n+1) = A000045(2n).
a(2n) = a(2n-1) + 2*a(2n-2), a(2n+1) = (a(2n) + a(2n-1))/2. (End)
a(n) = ((-1)^n * Fibonacci(n) + Lucas(n))/2. - Vladimir Reshetnikov, Sep 24 2016
EXAMPLE
a(6) = Fibonacci(7) = 13, a(7) = Fibonacci(6) = 8.
MAPLE
a:= n-> (<<0|1>, <1|1>>^(n+(-1)^n))[1, 2]:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 27 2023
MATHEMATICA
Flatten[Reverse/@Partition[Fibonacci[Range[0, 40]], 2]] (* or *) LinearRecurrence[{0, 3, 0, -1}, {1, 0, 2, 1}, 40] (* Harvey P. Dale, Sep 09 2015 *)
Table[((-1)^n Fibonacci[n] + LucasL[n])/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
PROG
(Sage) [fibonacci(n+(-1)^n) for n in range(39)] # Giuseppe Coppoletta, Mar 04 2015
(PARI) Vec((1-x^2+x^3)/(1-3*x^2+x^4) + O(x^50)) \\ Michel Marcus, Mar 04 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 31 2005
STATUS
approved