login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pair reversal of Fibonacci numbers.
2

%I #30 Sep 27 2023 11:23:23

%S 1,0,2,1,5,3,13,8,34,21,89,55,233,144,610,377,1597,987,4181,2584,

%T 10946,6765,28657,17711,75025,46368,196418,121393,514229,317811,

%U 1346269,832040,3524578,2178309,9227465,5702887,24157817,14930352,63245986,39088169,165580141

%N Pair reversal of Fibonacci numbers.

%C Here Fibonacci numbers are swapped in pairs, beginning with the pair (F(0),F(1)) changed in (F(1),F(0)). Similar to A135992, which starts switching F(1) and F(2). - _Giuseppe Coppoletta_, Mar 04 2015

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-1).

%F G.f.: (1-x^2+x^3)/(1-3x^2+x^4).

%F a(n) = 3*a(n-2) - a(n-4) for n>3 with a(0)=1, a(1)=0, a(2)=2, a(3)=1.

%F a(n) = (sqrt(5)/2-1/2)^n * ((-1)^n/2-sqrt(5)/10)+(sqrt(5)/2+1/2)^n * (sqrt(5)*(-1)^n/10+1/2).

%F From _Giuseppe Coppoletta_, Mar 04 2015: (Start)

%F a(2n) = A000045(2n+1), a(2n+1) = A000045(2n).

%F a(2n) = a(2n-1) + 2*a(2n-2), a(2n+1) = (a(2n) + a(2n-1))/2. (End)

%F a(n) = ((-1)^n * Fibonacci(n) + Lucas(n))/2. - _Vladimir Reshetnikov_, Sep 24 2016

%e a(6) = Fibonacci(7) = 13, a(7) = Fibonacci(6) = 8.

%p a:= n-> (<<0|1>, <1|1>>^(n+(-1)^n))[1,2]:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 27 2023

%t Flatten[Reverse/@Partition[Fibonacci[Range[0,40]],2]] (* or *) LinearRecurrence[{0,3,0,-1},{1,0,2,1},40] (* _Harvey P. Dale_, Sep 09 2015 *)

%t Table[((-1)^n Fibonacci[n] + LucasL[n])/2, {n, 0, 40}] (* _Vladimir Reshetnikov_, Sep 24 2016 *)

%o (Sage) [fibonacci(n+(-1)^n) for n in range(39)] # _Giuseppe Coppoletta_, Mar 04 2015

%o (PARI) Vec((1-x^2+x^3)/(1-3*x^2+x^4) + O(x^50)) \\ _Michel Marcus_, Mar 04 2015

%Y Cf. A000045, A001906, A135992.

%K easy,nonn

%O 0,3

%A _Paul Barry_, May 31 2005