login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108361
Diagonal sums of number triangle A108359.
2
1, 1, 2, 4, 7, 13, 25, 47, 90, 172, 329, 629, 1202, 2294, 4374, 8330, 15847, 30115, 57172, 108434, 205473, 389019, 735927, 1391121, 2627720, 4960134, 9356707, 17639323, 33234036, 62580444, 117776828, 221542596, 416524573, 782743029
OFFSET
0,3
FORMULA
a(n) = sum{k=0..floor(n/2)} ( sum{j=0..n-2k} C(k, j) * C(n-k-j, k) * floor((j+2)/2) ).
Empirical g.f.: (x^2+x-1)^2 / ((x-1)^2*(x+1)*(x^3+x^2+x-1)^2). - Colin Barker, Sep 26 2014
MAPLE
A108361:=n->add(add(binomial(k, j)*binomial(n-k-j, k)*floor((j+2)/2), j=0..n-2*k), k=0..floor(n/2)): seq(A108361(n), n=0..50); # Wesley Ivan Hurt, Sep 26 2014
MATHEMATICA
Table[Sum[Sum[Binomial[k, j] Binomial[n - k - j, k] Floor[(j + 2)/2], {j, 0, n - 2 k}], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Sep 26 2014 *)
CROSSREFS
Cf. A108359.
Sequence in context: A367400 A018082 A018083 * A082423 A176485 A119266
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 31 2005
STATUS
approved