OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,0,-4,-2,2,4,0,-1,-1).
FORMULA
a(n) = sum{k=0..floor(n/2)} ( sum{j=0..n-2k} C(k, j) * C(n-k-j, k) * floor((j+2)/2) ).
Empirical g.f.: (x^2+x-1)^2 / ((x-1)^2*(x+1)*(x^3+x^2+x-1)^2). - Colin Barker, Sep 26 2014
MAPLE
A108361:=n->add(add(binomial(k, j)*binomial(n-k-j, k)*floor((j+2)/2), j=0..n-2*k), k=0..floor(n/2)): seq(A108361(n), n=0..50); # Wesley Ivan Hurt, Sep 26 2014
MATHEMATICA
Table[Sum[Sum[Binomial[k, j] Binomial[n - k - j, k] Floor[(j + 2)/2], {j, 0, n - 2 k}], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Sep 26 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 31 2005
STATUS
approved