login
A108361
Diagonal sums of number triangle A108359.
2
1, 1, 2, 4, 7, 13, 25, 47, 90, 172, 329, 629, 1202, 2294, 4374, 8330, 15847, 30115, 57172, 108434, 205473, 389019, 735927, 1391121, 2627720, 4960134, 9356707, 17639323, 33234036, 62580444, 117776828, 221542596, 416524573, 782743029
OFFSET
0,3
FORMULA
a(n) = sum{k=0..floor(n/2)} ( sum{j=0..n-2k} C(k, j) * C(n-k-j, k) * floor((j+2)/2) ).
Empirical g.f.: (x^2+x-1)^2 / ((x-1)^2*(x+1)*(x^3+x^2+x-1)^2). - Colin Barker, Sep 26 2014
MAPLE
A108361:=n->add(add(binomial(k, j)*binomial(n-k-j, k)*floor((j+2)/2), j=0..n-2*k), k=0..floor(n/2)): seq(A108361(n), n=0..50); # Wesley Ivan Hurt, Sep 26 2014
MATHEMATICA
Table[Sum[Sum[Binomial[k, j] Binomial[n - k - j, k] Floor[(j + 2)/2], {j, 0, n - 2 k}], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Sep 26 2014 *)
CROSSREFS
Cf. A108359.
Sequence in context: A367400 A018082 A018083 * A082423 A176485 A119266
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 31 2005
STATUS
approved