login
A108359
A symmetric number triangle based on floor((n+2)/2).
3
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 28, 28, 9, 1, 1, 11, 47, 76, 47, 11, 1, 1, 13, 71, 163, 163, 71, 13, 1, 1, 15, 100, 301, 433, 301, 100, 15, 1, 1, 17, 134, 502, 961, 961, 502, 134, 17, 1, 1, 19, 173, 778, 1879, 2515, 1879, 778, 173, 19, 1, 1, 21, 217, 1141
OFFSET
0,5
COMMENTS
Row sums are A108360. Diagonal sums are A108361.
FORMULA
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*floor((j+2)/2). As a square array read by antidiagonals, T(n,k) = Sum_{j=0..n} binomial(k,j)*binomial(n+k-j,k)*floor((j+2)/2).
EXAMPLE
Rows begin
1;
1, 1;
1, 3, 1;
1, 5, 5, 1;
1, 7, 14, 7, 1;
1, 9, 28, 28, 9, 1;
1, 11, 47, 76, 47, 11, 1;
As a square array read by antidiagonals, rows start
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 5, 14, 28, 47, 71, ...
1, 7, 28, 76, 163, 301, ...
1, 9, 47, 163, 433, 961, ...
1, 11, 71, 301, 961, 2515, ...
1, 13, 100, 502, 1879, 5695, ...
CROSSREFS
Sequence in context: A326792 A144461 A106597 * A100936 A086620 A338934
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 31 2005
STATUS
approved