login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136680
Triangle T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1, read by rows.
1
1, 1, 1, 1, 1, 4, 1, 1, 4, 20, 1, 1, 4, 20, 520, 1, 1, 4, 20, 520, 26440, 1, 1, 4, 20, 520, 26440, 8766080, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960, 694027278828744960
OFFSET
1,6
FORMULA
T(k) = T(k-1) + n^(k-2)*T(k-2), with T(0) = 0, T(1) = 1.
T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1. - G. C. Greubel, Dec 01 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 4;
1, 1, 4, 20;
1, 1, 4, 20, 520;
1, 1, 4, 20, 520, 26440;
1, 1, 4, 20, 520, 26440, 8766080;
1, 1, 4, 20, 520, 26440, 8766080, 6939853440;
1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960;
MATHEMATICA
T[k_]:= T[k]= If[k<2, k, T[k-1] + n^(k-2)*T[k-2]];
Table[T[k], {n, 10}, {k, n}]//Flatten
PROG
(Magma)
function f(k)
if k lt 2 then return k;
else return f(k-1) + k^(k-2)*f(k-2);
end if; return f;
end function;
A136680:= func< n, k | k le n select f(k) else 0 >;
[A136680(n, k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 01 2022
(SageMath)
@CachedFunction
def f(k):
if (k<2): return k
else: return f(k-1) + k^(k-2)*f(k-2)
def A136680(n, k): return f(k) if (k < n+1) else 0
flatten([[A136680(n, k) for k in range(1, n+1)] for n in range(1, 15)]) # G. C. Greubel, Dec 01 2022
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 06 2008
EXTENSIONS
Edited by G. C. Greubel, Dec 01 2022
STATUS
approved