login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015460
q-Fibonacci numbers for q=3.
15
0, 1, 1, 4, 13, 121, 1174, 30577, 886423, 67758322, 5883579625, 1339570631551, 348759063908176, 237649677731273173, 185582515360156234789, 379075929664916795231668, 888014493839316022947740209
OFFSET
0,4
COMMENTS
Note that a(2,3,4,5) = {1,4,13,121} coincide with A003462(1,2,3,5). - Zak Seidov, Dec 19 2014
LINKS
FORMULA
a(n) = a(n-1) + 3^(n-2) * a(n-2).
Associated constant: C_3 = lim_{n->infinity} a(n)*a(n-2)/a(n-1)^2 = 1.147262608254535257774121586... . - Benoit Cloitre, Aug 30 2003
a(n)*a(n+3) - a(n)*a(n+2) - 3*a(n+1)*a(n+2) + 3*a(n+1)^2 = 0. - Emanuele Munarini, Dec 05 2017
MAPLE
q:=3; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*3^(n-2)}, a, {n, 30}] (* Vincenzo Librandi, Nov 08 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 3], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
PROG
(Magma) [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(3^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
(PARI) q=3; m=20; v=concat([0, 1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
(Sage)
def F(n, q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n, 3) for n in (0..20)] # G. C. Greubel, Dec 16 2019
(GAP) q:=3;; a:=[0, 1];; for n in [3..30] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
CROSSREFS
Cf. A003462.
q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), this sequence (q=3), A015461 (q=4), A015462 (q=5), A015463 (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), A015468 (q=10), A015469 (q=11), A015470 (q=12).
Sequence in context: A362283 A276912 A045886 * A121813 A197897 A203380
KEYWORD
nonn,easy
STATUS
approved